Functional variance estimation using penalized splines with principal component analysis

被引:9
|
作者
Kauermann, Goeran [1 ]
Wegener, Michael [2 ]
机构
[1] Univ Bielefeld, Dept Econ, Ctr Stat, D-33501 Bielefeld, Germany
[2] DEKA Investment GmbH, D-60325 Frankfurt, Germany
关键词
Functional data analysis; Principal components; Penalized splines; Mixed models; REGRESSION-ANALYSIS; TERM STRUCTURE; MODELS;
D O I
10.1007/s11222-009-9156-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In many fields of empirical research one is faced with observations arising from a functional process. If so, classical multivariate methods are often not feasible or appropriate to explore the data at hand and functional data analysis is prevailing. In this paper we present a method for joint modeling of mean and variance in longitudinal data using penalized splines. Unlike previous approaches we model both components simultaneously via rich spline bases. Estimation as well as smoothing parameter selection is carried out using a mixed model framework. The resulting smooth covariance structures are then used to perform principal component analysis. We illustrate our approach by several simulations and an application to financial interest data.
引用
收藏
页码:159 / 171
页数:13
相关论文
共 50 条
  • [21] Supervised functional principal component analysis
    Nie, Yunlong
    Wang, Liangliang
    Liu, Baisen
    Cao, Jiguo
    STATISTICS AND COMPUTING, 2018, 28 (03) : 713 - 723
  • [22] Functional quantile principal component analysis
    Mendez-Civieta, Alvaro
    Wei, Ying
    Diaz, Keith M.
    Goldsmith, Jeff
    BIOSTATISTICS, 2024, 26 (01)
  • [23] Supervised functional principal component analysis
    Yunlong Nie
    Liangliang Wang
    Baisen Liu
    Jiguo Cao
    Statistics and Computing, 2018, 28 : 713 - 723
  • [24] Parametric Functional Principal Component Analysis
    Sang, Peijun
    Wang, Liangliang
    Cao, Jiguo
    BIOMETRICS, 2017, 73 (03) : 802 - 810
  • [25] Structured Functional Principal Component Analysis
    Shou, Haochang
    Zipunnikov, Vadim
    Crainiceanu, Ciprian M.
    Greven, Sonja
    BIOMETRICS, 2015, 71 (01) : 247 - 257
  • [26] Interpretable Functional Principal Component Analysis
    Lin, Zhenhua
    Wang, Liangliang
    Cao, Jiguo
    BIOMETRICS, 2016, 72 (03) : 846 - 854
  • [27] Functional quantile principal component analysis
    Mendez-Civieta, Alvaro
    Wei, Ying
    Diaz, Keith M.
    Goldsmith, Jeff
    BIOSTATISTICS, 2024,
  • [28] MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
    Di, Chong-Zhi
    Crainiceanu, Ciprian M.
    Caffo, Brian S.
    Punjabi, Naresh M.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (01) : 458 - 488
  • [29] Interpreting sensory data by combining principal component analysis and analysis of variance
    Luciano, Giorgio
    Naes, Tormod
    FOOD QUALITY AND PREFERENCE, 2009, 20 (03) : 167 - 175
  • [30] Forecasting in nonlinear univariate time series using penalized splines
    Wegener, Michael
    Kauermann, Goeran
    STATISTICAL PAPERS, 2017, 58 (03) : 557 - 576