Structural evaluation and deformation features of interface of joint between nano-crystalline Fe-Ni-Cr alloy and nano-crystalline Ni during creep process

被引:39
作者
Pal, S. [1 ]
Meraj, Md. [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Met & Mat Engn, Rourkela 769008, India
关键词
Molecular dynamics; Creep; Interface; Nano-joint; Voronoi polyhedra; MOLECULAR-DYNAMICS SIMULATION; COHESIVE ZONE; NANOINDENTATION CREEP; MECHANICAL-PROPERTIES; GRAIN-BOUNDARIES; BEHAVIOR; MODEL; NANOPARTICLES; IRRADIATION; CASCADES;
D O I
10.1016/j.matdes.2016.06.086
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A molecular dynamic (MD) simulation has been performed to study the creep behavior and structural evaluation during creep process of nano joint of nano-crystalline (NC) Ni and Fe-Ni-Cr alloy (18 at.% Cr, 8 at.% Ni and rest Fe) using EAM potential. A simulation box of 14.4 x 14.4 x 14.4 nm dimension having 254,407 atoms is taken for performing MD simulation. MD simulation of creep of this nano joint has been performed for different temperatures and different applied load. Centro-symmetry parameter (CSP) analysis, common neighbor analysis (CNA), radial distribution function (RDF), Wigner-Seitz defect analysis, and Voronoi cluster analysis (VCs) have been performed to study structural evolution during creep process. Dislocation also plays a role along with the grain boundary diffusion at least for primary and secondary regime of creep process of this nano joint between NC Ni and Fe-Ni-Cr alloy. The average displacement of the atoms in the regions ( 1 nm, 2 nm, and 3 nm) adjacent to the interface during creep process is calculated using traction and separation method to study the atomic movement near the interface. The atoms are observed to be displaced more which are nearer to the interface during creep of this nano joint system. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:168 / 182
页数:15
相关论文
共 79 条
[61]   Element diffusion model of bimetallic hot deformation in metallurgical bonding process [J].
Sun, C. Y. ;
Li, L. ;
Fu, M. W. ;
Zhou, Q. J. .
MATERIALS & DESIGN, 2016, 94 :433-443
[62]   Modeling of composite fracture using cohesive zone and bridging models [J].
Sun, CT ;
Jin, ZH .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (10) :1297-1302
[63]   Dynamic recovery in nanocrystalline Ni [J].
Sun, Z. ;
Van Petegem, S. ;
Cervellino, A. ;
Durst, K. ;
Blum, W. ;
Van Swygenhoven, H. .
ACTA MATERIALIA, 2015, 91 :91-100
[64]   Molecular dynamics study of atomic-level structure in monatomic metallic glass [J].
Trady, S. ;
Mazroui, M. ;
Hasnaoui, A. ;
Saadouni, K. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 443 :136-142
[65]   Coupled motion of asymmetrical tilt grain boundaries: Molecular dynamics and phase field crystal simulations [J].
Trautt, Z. T. ;
Adland, A. ;
Karma, A. ;
Mishin, Y. .
ACTA MATERIALIA, 2012, 60 (19) :6528-6546
[66]   INTERDIFFUSION IN THIN-FILMS [J].
TU, KN .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1985, 15 :147-176
[67]   Creep in nanocrystalline Ni during X-ray diffraction [J].
Van Petegem, S. ;
Brandstetter, S. ;
Schmitt, B. ;
Van Swygenhoven, H. .
SCRIPTA MATERIALIA, 2009, 60 (05) :297-300
[68]   New parametric applications concerning the theory of quadratic forms - Second announcement [J].
Voronoi, G .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1908, 134 (1/4) :198-287
[69]   Grain Size Dependence of Creep in Nanocrystalline Copper by Molecular Dynamics [J].
Wang, Yun-Jiang ;
Ishii, Akio ;
Ogata, Shigenobu .
MATERIALS TRANSACTIONS, 2012, 53 (01) :156-160
[70]   Transition of creep mechanism in nanocrystalline metals [J].
Wang, Yun-Jiang ;
Ishii, Akio ;
Ogata, Shigenobu .
PHYSICAL REVIEW B, 2011, 84 (22)