Salivary extracellular RNA biomarkers for insulin resistance detection in hispanics

被引:5
作者
Zhang, Yong [1 ,2 ]
Sun, Jie [2 ,3 ]
Li, Feng [2 ]
Grogan, Tristan R. [4 ]
Vergara, Jose L. [5 ]
Luan, QingXian [6 ]
Park, Moon-Soo [2 ,7 ]
Chia, David [8 ]
Elashoff, David [4 ]
Joshipura, Kaumudi J. [5 ,9 ]
Wong, David T. W. [2 ]
机构
[1] Peking Univ Sch & Hosp Stomatol, Clin Div 1, Beijing, Peoples R China
[2] Univ Calif Los Angeles, Sch Dent, 73-017 CHS,10833 Le Conte Ave, Los Angeles, CA 90095 USA
[3] Shenzhen Univ, Sch Med, Shenzhen, Peoples R China
[4] Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat & Med, Los Angeles, CA 90095 USA
[5] Univ Puerto Rico, Sch Dent Med, Ctr Clin Res & Hlth Promot, Off A107,Med Sci Campus,POB 365067, San Juan, PR 00936 USA
[6] Peking Univ Sch & Hosp Stomatol, Dept Periodontol, Beijing, Peoples R China
[7] Gangneung Wonju Natl Univ, Coll Dent, Oral Sci Inst, Dept Oral Med & Diag, Kangnung, South Korea
[8] Univ Calif Los Angeles, Dept Pathol, Los Angeles, CA 90095 USA
[9] Harvard Univ, Dept Epidemiol, TH Chan Sch Publ Hlth, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Salivary biomarker; Extracellular RNA; Insulin resistance; HOMEOSTASIS MODEL ASSESSMENT; GLUCOSE CLAMP TECHNIQUE; MINIMUM INFORMATION; METABOLIC SYNDROME; TOLERANCE TEST; SENSITIVITY; SECRETION; RISK; POPULATION; STANDARDS;
D O I
10.1016/j.diabres.2017.07.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: Insulin resistance (IR) detection is challenging and no test is currently used in clinical practice. We developed salivary biomarkers that could be used for IR detection. Methods: We collected saliva from 186 healthy and 276 pre-diabetic participants, divided them into high and low IR groups based on a HOMA cutoff of 2.5. We profiled extracellular transcriptome by microarray in saliva supernatant from 23 high IR and 15 low IR participants, and pre-validated the top ten extracellular mRNA (exRNA) markers in a new cohort of 40 high and 40 low IR participants. A prediction panel was then built and validated in an independent cohort of 149 high and 195 low IR participants. Results: Transcriptomic analyses identified 42 exRNA candidates differentially present in saliva of high and low IR participants. From the top ten candidates, six were individually validated (PRKCB, S100A12, IL1R2, CAMP, VPS4B, CAP1) (p < 0.01) and yielded AUC values ranging from 0.66 to 0.76. Body mass index (BMI) was significant higher in high compared to low IR group with AUC of 0.66, and showed no correlation with any of candidate biomarkers. The combination of four exRNA markers (IL1R2, VPS4B, CAP1, LUZP6) with BMI achieved excellent results in the prediction panel building dataset (AUC = 0.79, sensitivity = 79%, specificity = 64%). The prediction model was validated in an independent cohort (AUC = 0.82, sensitivity = 63%, specificity = 92%). Conclusions: A panel of four salivary exRNA biomarkers (IL1R2, VPS4B, CAP1, LUZP6) and BMI was validated that can distinguish high and low IR participants, overall and in subgroups of healthy and pre-diabetic participants. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 40 条
[1]   Relationship between obesity, insulin resistance, and coronary heart disease risk [J].
Abbasi, F ;
Brown, BW ;
Lamendola, C ;
McLaughlin, T ;
Reaven, GM .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2002, 40 (05) :937-943
[2]   Evaluation of fasting plasma insulin concentration as an estimate of insulin action in nondiabetic individuals: comparison with the homeostasis model assessment of insulin resistance (HOMA-IR) [J].
Abbasi, Fahim ;
Okeke, QueenDenise ;
Reaven, Gerald M. .
ACTA DIABETOLOGICA, 2014, 51 (02) :193-197
[3]  
[Anonymous], 2014, DIABETES CARE S1, DOI DOI 10.2337/DC14-S081
[4]   Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity - Studies in subjects with various degrees of glucose tolerance and insulin sensitivity [J].
Bonora, E ;
Saggiani, F ;
Targher, G ;
Zenere, MB ;
Alberiche, M ;
Monauni, T ;
Bonadonna, RC ;
Muggeo, M .
DIABETES CARE, 2000, 23 (01) :57-63
[5]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[6]  
DEFRONZO RA, 1979, AM J PHYSIOL, V237, pE214
[7]  
DeFronzo RA, 2010, DIABETES CARE, V33, P951, DOI [10.2337/dc10-0646, 10.2337/dc09-1521]
[8]   The metabolic syndrome [J].
Eckel, RH ;
Grundy, SM ;
Zimmet, PZ .
LANCET, 2005, 365 (9468) :1415-1428
[9]   How to measure insulin sensitivity [J].
Ferrannini, E ;
Mari, A .
JOURNAL OF HYPERTENSION, 1998, 16 (07) :895-906
[10]  
Fujimoto W.Y., 2000, AM J MED, V108, p9S, DOI [DOI 10.1016/S0002-9343(00)00337-5, 10.1016/s0002-9343(00)00337-5, 10.1016/s0002-9343, DOI 10.1016/S0002-9343]