SINGULAR LIMIT AND LONG-TIME DYNAMICS OF BRESSE SYSTEMS

被引:59
作者
Ma, To Fu [1 ]
Monteiro, Rodrigo Nunes [1 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
关键词
Bresse system; Timoshenko system; singular limit; global attractor; exponential attractor; upper-semicontinuity; DECAY-RATE; UPPER SEMICONTINUITY; EQUATION; RATES; DISSIPATION; ATTRACTOR; SPEEDS; ENERGY;
D O I
10.1137/15M1039894
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bresse system is a valid model for arched beams which reduces to the classical Timoshenko system when the arch curvature l is zero. Our first result shows the Timoshenko system as a singular limit of the Bresse system as l -> 0. The remaining results are concerned with the long-time dynamics of Bresse systems. In a general framework, allowing nonlinear damping and forcing terms, we prove the existence of a smooth global attractor with finite fractal dimension and exponential attractors as well. We also compare the Bresse system with the Timoshenko system, in the sense of the upper-semicontinuity of their attractors as l -> 0.
引用
收藏
页码:2468 / 2495
页数:28
相关论文
共 27 条
[1]   Stability and optimality of decay rate for a weakly dissipative Bresse system [J].
Alves, M. O. ;
Fatori, L. H. ;
Jorge Silva, M. A. ;
Monteiro, R. N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (05) :898-908
[2]  
[Anonymous], 1991, LEZIONI LINCEI 1988
[3]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[4]  
Babin A. V., 1992, STUDIES MATH ITS APP
[5]  
BARBU V., 1976, Editura Academiei Republicii Socialiste Romania
[6]   Stability to weak dissipative Bresse system [J].
Boussouira, Fatiha Alabau ;
Munoz Rivera, Jaime E. ;
Almeida Junior, Dilberto da S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) :481-498
[7]  
Bresse JAC., 1859, Cours de Mechanique Appliquee
[8]   Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping [J].
Cavalcanti, M. M. ;
Domingos Cavalcanti, V. N. ;
Falco Nascimento, F. A. ;
Lasiecka, I. ;
Rodrigues, J. H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1189-1206
[9]   Decay rates for Bresse system with arbitrary nonlinear localized damping [J].
Charles, Wenden ;
Soriano, J. A. ;
Falcao Nascimento, Flavio A. ;
Rodrigues, J. H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2267-2290
[10]   On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation [J].
Chueshov, I ;
Eller, M ;
Lasiecka, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) :1901-1951