A NEW CLASS OF POSITIVE SEMI-DEFINITE TENSORS

被引:1
作者
Xu, Yi [1 ]
Liu, Jinjie [2 ]
Qi, Liqun [2 ]
机构
[1] Southeast Univ, Math Dept, 2 Sipailou, Nanjing 210096, Jiangsu, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Positive (semi-)definite tensor; completely positive tensor; H-eigenvalue; MO-tensor; MO-like tensor; Sup-MO value; EIGENVALUES;
D O I
10.3934/jimo.2018186
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential MO tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2009, NONNEGATIVE MATRIX T
[2]  
Bonnans J. F., 2013, Perturbation analysis of optimization problems.
[3]   SOS TENSOR DECOMPOSITION: THEORY AND APPLICATIONS [J].
Chen, Haibin ;
Li, Guoyin ;
Qi, Liqun .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (08) :2073-2100
[4]  
Hilbert David, 1888, Math. Ann., V32, P342, DOI DOI 10.1007/BF01443605
[5]   Most Tensor Problems Are NP-Hard [J].
Hillar, Christopher J. ;
Lim, Lek-Heng .
JOURNAL OF THE ACM, 2013, 60 (06)
[6]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[7]   Criterions for the positive definiteness of real supersymmetric tensors [J].
Li, Chaoqian ;
Wang, Feng ;
Zhao, Jianxing ;
Zhu, Yan ;
Li, Yaotang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :1-14
[8]   COMPLETELY POSITIVE TENSORS: PROPERTIES, EASILY CHECKABLE SUBCLASSES, AND TRACTABLE RELAXATIONS [J].
Luo, Ziyan ;
Qi, Liqun .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (04) :1675-1698
[9]  
[罗自炎 Luo Ziyan], 2016, [中国科学. 数学, Scientia Sinica Mathematica], V46, P639
[10]  
Nash J., 1990, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, V2nd ed.