Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission

被引:40
作者
Rubbert, Christian [1 ]
Patil, Kaustubh R. [2 ,3 ]
Beseoglu, Kerim [4 ]
Mathys, Christian [1 ,5 ]
May, Rebecca [1 ]
Kaschner, Marius G. [1 ]
Sigl, Benjamin [1 ]
Teichert, Nikolas A. [1 ]
Boos, Johannes [1 ]
Turowski, Bernd [1 ]
Caspers, Julian [1 ,6 ]
机构
[1] Univ Dusseldorf, Med Fac, Dept Diagnost & Intervent Radiol, Moorenstr 5, D-40225 Dusseldorf, Germany
[2] Res Ctr Julich, Inst Neurosci & Med, Brain & Behav INM 7, D-52425 Julich, Germany
[3] Heinrich Heine Univ Dusseldorf, Inst Syst Neurosci, Med Fac, D-40225 Dusseldorf, Germany
[4] Heinrich Heine Univ, Med Fac, Dept Neurosurg, D-40225 Dusseldorf, Germany
[5] Carl von Ossietzky Univ Oldenburg, Inst Radiol & Neuroradiol, Evangel Krankenhaus, D-26122 Oldenburg, Germany
[6] Res Ctr Julich, Inst Neurosci & Med INM 1, D-52425 Julich, Germany
关键词
Subarachnoid haemorrhage; Aneurysm; Multidetector computed tomography; Critical care outcomes; Machine learning; DELAYED CEREBRAL-ISCHEMIA; RADIATION-DOSE REDUCTION; VOLUME-PERFUSION CT; BRAIN; VASOSPASM; PERFORMANCE;
D O I
10.1007/s00330-018-5505-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesThe pathogenesis leading to poor functional outcome after aneurysmal subarachnoid haemorrhage (aSAH) is multifactorial and not fully understood. We evaluated a machine learning approach based on easily determinable clinical and CT perfusion (CTP) features in the course of patient admission to predict the functional outcome 6 months after ictus.MethodsOut of 630 consecutive subarachnoid haemorrhage patients (2008-2015), 147 (mean age 54.3, 66.7% women) were retrospectively included (Inclusion: aSAH, admission within 24 h of ictus, CTP within 24 h of admission, documented modified Rankin scale (mRS) grades after 6 months. Exclusion: occlusive therapy before first CTP,previous aSAH, CTP not evaluable). A random forests model with conditional inference trees was optimised and trained on sex, age, World Federation of Neurosurgical Societies (WFNS) and modified Fisher grades, aneurysm in anterior vs. posterior circulation, early external ventricular drainage (EVD), as well as MTT and T-max maximum, mean, standard deviation (SD), range, 75th quartile and interquartile range to predict dichotomised mRS ( 2; > 2). Performance was assessed using the balanced accuracy over the training and validation folds using 20 repeats of 10-fold cross-validation.ResultsIn the final model, using 200 trees and the synthetic minority oversampling technique, median balanced accuracy was 84.4% (SD 0.7) over the training folds and 70.9% (SD 1.2) over the validation folds. The five most important features were the modified Fisher grade, age, MTT range, WFNS and early EVD.ConclusionsA random forests model trained on easily determinable features in the course of patient admission can predict the functional outcome 6 months after aSAH with considerable accuracy.Key Points center dot Features determinable in the course of admission of a patient with aneurysmal subarachnoid haemorrhage (aSAH) can predict the functional outcome 6 months after the occurrence of aSAH.center dot The top five predictive features were the modified Fisher grade, age, the mean transit time (MTT) range from computed tomography perfusion (CTP), the WFNS grade and the early necessity for an external ventricular drainage (EVD).center dot The range between the minimum and the maximum MTT may prove to be a valuable biomarker for detrimental functional outcome.
引用
收藏
页码:4949 / 4958
页数:10
相关论文
共 41 条
  • [1] Automatic Quantification of Subarachnoid Hemorrhage on Noncontrast CT
    Boers, A. M.
    Zijistra, I. A.
    Gathier, C. S.
    van den Berg, R.
    Slump, C. H.
    Marquering, H. A.
    Majoie, C. B.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (12) : 2279 - 2286
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] The Physiological Significance of the Time-to-Maximum (Tmax) Parameter in Perfusion MRI
    Calamante, Fernando
    Christensen, Soren
    Desmond, Patricia M.
    Ostergaard, Leif
    Davis, Stephen M.
    Connelly, Alan
    [J]. STROKE, 2010, 41 (06) : 1169 - 1174
  • [4] Timing of Mean Transit Time Maximization is Associated with Neurological Outcome After Subarachnoid Hemorrhage
    Caspers, J.
    Rubbert, C.
    Turowski, B.
    Martens, D.
    Reichelt, D. C.
    May, R.
    Aissa, J.
    Haenggi, D.
    Etminan, N.
    Mathys, C.
    [J]. CLINICAL NEURORADIOLOGY, 2017, 27 (01) : 15 - 22
  • [5] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)
  • [6] CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction
    Cremers, Charlotte H. P.
    Vos, Pieter C.
    van der Schaaf, Irene C.
    Velthuis, Birgitta K.
    Vergouwen, Mervyn D. I.
    Rinkel, Gabriel J. E.
    Dankbaar, Jan Willem
    [J]. NEURORADIOLOGY, 2015, 57 (09) : 897 - 902
  • [7] CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis
    Cremers, Charlotte H. P.
    van der Schaaf, Irene C.
    Wensink, Emerens
    Greving, Jacoba P.
    Rinkel, Gabriel J. E.
    Velthuis, Birgitta K.
    Vergouwen, Mervyn D. I.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2014, 34 (02) : 200 - 207
  • [8] Predicting the Outcome of Patients With Subarachnoid Hemorrhage Using Machine Learning Techniques
    de Toledo, Paula
    Rios, Pablo M.
    Ledezma, Agapito
    Sanchis, Araceli
    Alen, Jose F.
    Lagares, Alfonso
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05): : 794 - 801
  • [9] Critical Care Management of Patients Following Aneurysmal Subarachnoid Hemorrhage: Recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference
    Diringer, Michael N.
    Bleck, Thomas P.
    Hemphill, J. Claude, III
    Menon, David
    Shutter, Lori
    Vespa, Paul
    Bruder, Nicolas
    Connolly, E. Sander, Jr.
    Citerio, Giuseppe
    Gress, Daryl
    Haenggi, Daniel
    Hoh, Brian L.
    Lanzino, Giuseppe
    Le Roux, Peter
    Rabinstein, Alejandro
    Schmutzhard, Erich
    Stocchetti, Nino
    Suarez, Jose I.
    Treggiari, Miriam
    Tseng, Ming-Yuan
    Vergouwen, Mervyn D. I.
    Wolf, Stefan
    Zipfel, Gregory
    [J]. NEUROCRITICAL CARE, 2011, 15 (02) : 211 - 240
  • [10] The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease
    Dreier, Jens P.
    [J]. NATURE MEDICINE, 2011, 17 (04) : 439 - 447