Approximation Algorithms for Intersection Graphs

被引:0
作者
Kammer, Frank [1 ]
Tholey, Torsten [1 ]
Voepel, Heiko [1 ]
机构
[1] Univ Augsburg, Inst Informat, D-86135 Augsburg, Germany
来源
APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES | 2010年 / 6302卷
关键词
UNIT DISK GRAPHS; GEOMETRIC GRAPHS; SCHEMES; PACKING; CLIQUE; PLANE; SETS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study three complexity parameters that in some sense measure how chordal-like a graph is. The similarity to chordal graphs is used to construct simple polynomial-time approximation algorithms with constant approximation ratio for many NP-hard problems, when restricted to graphs for which at least one of the three complexity parameters is bounded by a constant. As applications we present approximation algorithms with constant approximation ratio for maximum weighted independent set; minimum (independent) dominating set, minimum vertex coloring, maximum weighted clique, and minimum clique partition for large classes of intersection graphs.
引用
收藏
页码:260 / 273
页数:14
相关论文
共 34 条
  • [1] [Anonymous], 2002, APPL OPTIMIZAT
  • [2] Scheduling split intervals
    Bar-Yehuda, R.
    Halldorsson, M. M.
    Naor, J.
    Shachnai, H.
    Shapira, I.
    [J]. SIAM JOURNAL ON COMPUTING, 2006, 36 (01) : 1 - 15
  • [3] A linear-time ie algorithm for finding three-decompositions of small treewidth
    Bodlaender, HL
    [J]. SIAM JOURNAL ON COMPUTING, 1996, 25 (06) : 1305 - 1317
  • [4] Butman A, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P268
  • [5] CAREY MR, 1976, THEORETICAL COMPUTER, V1, P237
  • [6] Cerioli M.R., 2004, ELECT NOTES DISCRETE, V18, P73
  • [7] Polynomial-time approximation schemes for packing and piercing fat objects
    Chan, TM
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2003, 46 (02): : 178 - 189
  • [8] UNIT DISK GRAPHS
    CLARK, BN
    COLBOURN, CJ
    JOHNSON, DS
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 165 - 177
  • [9] THE MONADIC 2ND-ORDER LOGIC OF GRAPHS .1. RECOGNIZABLE SETS OF FINITE GRAPHS
    COURCELLE, B
    [J]. INFORMATION AND COMPUTATION, 1990, 85 (01) : 12 - 75
  • [10] DUMITRESCU A, ARXIV09091552V1