Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots

被引:62
作者
Kroupa, Daniel M. [1 ,2 ]
Hughes, Barbara K. [1 ,2 ]
Miller, Elisa M. [1 ]
Moore, David T. [1 ]
Anderson, Nicholas C. [1 ]
Chernomordik, Boris D. [1 ]
Nozik, Arthur J. [1 ,2 ]
Beard, Matthew C. [1 ]
机构
[1] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[2] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA
关键词
OPTICAL-PROPERTIES; SURFACE-CHEMISTRY; THIN-FILMS; ELECTRON; DIFFUSION; GROWTH; SE;
D O I
10.1021/jacs.7b04551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including a bleach of the first exciton transition and the appearance of a quantum confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k.p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. We hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.
引用
收藏
页码:10382 / 10394
页数:13
相关论文
共 45 条
[1]   From Impurity Doping to Metallic Growth in Diffusion Doping: Properties and Structure of Silver-Doped In As Nano crystals [J].
Amit, Yorai ;
Li, Yuanyuan ;
Frenkel, Anatoly I. ;
Banin, Uri .
ACS NANO, 2015, 9 (11) :10790-10800
[2]   Pauli blocking versus electrostatic attenuation of optical transition intensities in charged PbSe quantum dots [J].
An, J. M. ;
Franceschetti, A. ;
Zunger, Alex .
PHYSICAL REVIEW B, 2007, 76 (16)
[3]   Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding [J].
Anderson, Nicholas C. ;
Hendricks, Mark P. ;
Choi, Joshua J. ;
Owen, Jonathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18536-18548
[4]   Chemistry of Doped Colloidal Nanocrystals [J].
Buonsanti, Raffaella ;
Milliron, Delia J. .
CHEMISTRY OF MATERIALS, 2013, 25 (08) :1305-1317
[5]   Suppression of Auger Processes in Confined Structures [J].
Cragg, George E. ;
Efros, Alexander L. .
NANO LETTERS, 2010, 10 (01) :313-317
[6]   Measurement of Electronic States of PbS Nanocrystal Quantum Dots Using Scanning Tunneling Spectroscopy: The Role of Parity Selection Rules in Optical Absorption [J].
Diaconescu, Bogdan ;
Padilha, Lazaro A. ;
Nagpal, Prashant ;
Swartzentruber, Brian S. ;
Klimov, Victor I. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[7]  
Efros AL, 2016, NAT NANOTECHNOL, V11, P661, DOI [10.1038/nnano.2016.140, 10.1038/NNANO.2016.140]
[8]   Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers [J].
Engel, Jesse H. ;
Surendranath, Yogesh ;
Alivisatos, A. Paul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (32) :13200-13203
[9]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[10]  
Fedorovich N.A., 1965, Sov. Phys.-Solid State, V7, P1593