Entanglement-enhanced measurement of a completely unknown optical phase

被引:48
|
作者
Xiang, G. Y. [1 ,2 ]
Higgins, B. L. [1 ]
Berry, D. W. [3 ]
Wiseman, H. M. [1 ]
Pryde, G. J. [1 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Ctr Quantum Comp Technol, Brisbane, Qld 4111, Australia
[2] Univ Sci & Technol China, Key Lab Quantum Informat, CAS, Anhua 230026, Hefei, Peoples R China
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
基金
澳大利亚研究理事会;
关键词
STANDARD QUANTUM LIMIT; STATES; INTERFEROMETRY; LIGHT;
D O I
10.1038/NPHOTON.2010.268
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Precise interferometric measurement is vital to many scientific and technological applications. Using quantum entanglement allows interferometric sensitivity that surpasses the shot-noise limit (SNL)(1,2). To date, experiments demonstrating entanglement-enhanced sub-SNL interferometry(3-6), and most theoretical treatments(7-13), have addressed the goal of increasing signal-tonoise ratios. This is suitable for phase-sensing-detecting small variations about an already known phase. However, it is not sufficient for ab initio phase-estimation-making a self-contained determination of a phase that is initially completely unknown within the interval [0, 2 pi). Both tasks are important(2), but not equivalent. To move from the sensing regime to the ab initio estimation regime requires a non-trivial phase-estimation algorithm(14-17). Here, we implement a 'bottom-up' approach, optimally utilizing the available entangled photon states, obtained by post-selection(5,6). This enables us to demonstrate sub-SNL ab initio estimation of an unknown phase by entanglement-enhanced optical interferometry.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 50 条
  • [21] Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement
    Liu, Fang
    Zhou, Yaoyao
    Yu, Juan
    Guo, Jiale
    Wu, Yang
    Xiao, Shixiong
    Wei, Dan
    Zhang, Yong
    Jia, Xiaojun
    Xiao, Min
    APPLIED PHYSICS LETTERS, 2017, 110 (02)
  • [22] Optical Frequency Stabilization and Optical Phase Locked Loops: Golden Threads of Precision Measurement
    Taubman, Matthew S.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1488 - 1505
  • [23] Experimental optical phase measurement approaching the exact Heisenberg limit
    Daryanoosh, Shakib
    Slussarenko, Sergei
    Berry, Dominic W.
    Wiseman, Howard M.
    Pryde, Geoff J.
    NATURE COMMUNICATIONS, 2018, 9
  • [24] Phase-tilting and rotation interferometry for dynamic optical measurement
    Yuan, Yufeng
    Ruan, Jianhao
    Rao, Mengqi
    Zhang, Xinyu
    Yin, Yuehong
    OPTICS AND LASER TECHNOLOGY, 2024, 174
  • [25] Quantum Enhanced Optical Phase Estimation With a Squeezed Thermal State
    Yu, Juan
    Qin, Yue
    Qin, Jinliang
    Wang, Hong
    Yan, Zhihui
    Jia, Xiaojun
    Peng, Kunchi
    PHYSICAL REVIEW APPLIED, 2020, 13 (02)
  • [26] Detailed measurement of the phase distribution of an optical beam with inverting vortex
    Miyamoto, Yoko
    Wada, Atsushi
    Yonemura, Takashi
    Takeda, Mitsuo
    JOURNAL OF OPTICS, 2013, 15 (04)
  • [27] OPTICAL VORTICES AS PHASE MARKERS TO WAVE-FRONT DEFORMATION MEASUREMENT
    Fraczek, Wojciech
    Mroczka, Janusz
    METROLOGY AND MEASUREMENT SYSTEMS, 2008, 15 (04): : 433 - 440
  • [28] Generation and measurement of high-order optical vortices by using the cross phase
    Wang, Chen
    Ren, Yuan
    Liu, Tong
    Luo, Chuankai
    Qiu, Song
    Li, Zhimeng
    Wu, Hao
    APPLIED OPTICS, 2020, 59 (13) : 4040 - 4047
  • [29] Real-time phase measurement of optical vortex via digital holography
    Qiu, Huaibin
    Liu, Xiaosong
    Wang, Kaiqing
    Dou, Jiazhen
    Di, Jianglei
    Qin, Yuwen
    FRONTIERS IN PHYSICS, 2023, 11
  • [30] Optical vortex interferometer: An overview of interferogram demodulation methods for dynamic phase measurement
    Dong, Jingtao
    Zhao, Enxi
    Xie, Liyuan
    Li, Yangyang
    Tian, Zhipeng
    Xie, Xinglong
    OPTICS AND LASERS IN ENGINEERING, 2024, 175