Eigenvalue bounds for transformations of solvable potentials

被引:13
作者
Hall, RL
Saad, N
机构
[1] Department of Mathematics and Statistics, Concordia University, Montréal, Que. H3G 1M8
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 09期
关键词
D O I
10.1088/0305-4470/29/9/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study smooth transformations V(r) = h(0)(r) + g(h(beta r)) of potentials V-0(r) = h(0)(r)+ h(beta r) for which exact bound-state solutions of Schrodinger's equation are known. Eigenvalue approximation formulae are obtained which provide lower or upper energy bounds according to whether the transformation function g is convex or concave. Detailed results are presented for perturbed Coulomb potentials of the form V(r) = a/r + br + cr(2) and V(r) = -1/r + mu ln(r + r(2)).
引用
收藏
页码:2127 / 2134
页数:8
相关论文
共 18 条
[1]  
ANOJIL M, 1983, J PHYS A, V16, P213
[2]   HYDROGENIC ATOMS IN THE EXTERNAL POTENTIAL V(R)=GR+LAMBDA-R(2) - EXACT-SOLUTIONS AND GROUND-STATE EIGENVALUE BOUNDS USING MOMENT METHODS [J].
BESSIS, D ;
VRSCAY, ER ;
HANDY, CR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02) :419-428
[3]   THE HILL DETERMINANT - AN APPLICATION TO A CLASS OF CONFINEMENT POTENTIALS [J].
CHAUDHURI, RN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (01) :209-211
[4]   STUDY OF THE POTENTIAL V = -A/R+BR [J].
CHHAJLANY, SC ;
LETOV, DA .
PHYSICAL REVIEW A, 1991, 44 (07) :4725-4727
[5]   ANALYTIC CONTINUED-FRACTION TECHNIQUE FOR BOUND AND CONFINED STATES FOR A CLASS OF CONFINEMENT POTENTIALS [J].
DATTA, DP ;
MUKHERJEE, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (10) :3161-3170
[6]   COMMENTS ON A PAPER CONCERNING THE ANALYTIC CONTINUED-FRACTION TECHNIQUE FOR BOUND-STATES [J].
FLESSAS, GP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (01) :L1-L5
[7]   ENERGY TRAJECTORIES FOR THE N-BOSON PROBLEM BY THE METHOD OF POTENTIAL ENVELOPES [J].
HALL, RL .
PHYSICAL REVIEW D, 1980, 22 (08) :2062-2072
[8]   ENVELOPE THEORY IN SPECTRAL GEOMETRY [J].
HALL, RL .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2779-2788
[10]   SCHRODINGERS EQUATION AND SPECIAL RADIAL ELECTRIC-FIELDS [J].
HAUTOT, AP .
PHYSICS LETTERS A, 1972, A 38 (05) :305-&