Unpredictable points and chaos

被引:37
作者
Akhmet, Marat [1 ]
Fen, Mehmet Onur [1 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 40卷
关键词
Unpredictable point; Poincarechaos; Quasi-minimal set; Symbolic dynamics; EQUATIONS;
D O I
10.1016/j.cnsns.2016.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. The existing definitions of chaos are formulated in sets of motions. This is the first time in the literature that description of chaos is initiated from a single motion. The theoretical results are exemplified by means of the symbolic dynamics. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 20 条
[1]  
Akhmet M, 2016, NONLINEAR PHYS SCI, P1, DOI 10.1007/978-3-662-47500-3
[2]  
[Anonymous], ACTA MATH
[3]  
[Anonymous], 1927, DYNAM SYST
[4]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[5]   SHIFT AUTOMORPHISMS IN THE HENON MAPPING [J].
DEVANEY, R ;
NITECKI, Z .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 67 (02) :137-146
[6]  
Devaney R., 2018, An Introduction to Chaotic Dynamical Systems
[7]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[8]   Regarding quasi-minimal sets in dynamic systems [J].
Hilmy, H .
ANNALS OF MATHEMATICS, 1936, 37 :899-907
[9]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO