Multi-objective Dynamic Analysis Using Fractional Entropy

被引:1
作者
Solteiro Pires, E. J. [1 ]
Tenreiro Machado, J. A. [2 ]
de Moura Oliveira, P. B. [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Escola Ciencias & Tecnol, INESC TEC INESC Technol & Sci UTAD Pole, P-5000811 Vila Real, Portugal
[2] Polytech Porto, Dept Elect Engn, ISEP Inst Engn, Rua Dr Antonio Bernardino de Almeida, P-4249015 Oporto, Portugal
来源
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016) | 2017年 / 557卷
关键词
Multi-objetive genetic algorithm; Fractional entropy; Diversity; Convergence; Dynamic; EVOLUTIONARY; OPTIMIZATION; ALGORITHMS; DIVERSITY;
D O I
10.1007/978-3-319-53480-0_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective optimization evolutionary techniques provide solutions for a specific problem using optimally concepts taking into consideration all the design criteria. In the last years, several multi-objective algorithms were proposed but usually the performance is measured at the end neglecting, therefore, the solution diversity along the interactions. In order to understand the evolution of the solutions this work studies the dynamic of the successive iterations. The analysis adopts the fractional entropy for measuring the statistical behavior of the population. The results show that the entropy is a good tool to monitor and capture phenomena such as the diversity and convergence during the algorithm execution.
引用
收藏
页码:448 / 456
页数:9
相关论文
共 21 条
  • [1] [Anonymous], 2008, MULTIOBJECTIVE OPTIM
  • [2] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [3] Ben-Naim A, 2012, ENTROPY 2 LAW INTERP
  • [4] Evolutionary multi-objective optimization: A historical view of the field
    Coello Coello, Carlos A.
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (01) : 28 - 36
  • [5] Deb K., 2000, Parallel Problem Solving from Nature PPSN VI. 6th International Conference. Proceedings (Lecture Notes in Computer Science Vol.1917), P849
  • [6] Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
  • [7] Deb K., 2001, MULTIOBJECTIVE OPTIM, V16
  • [8] A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    Derrac, Joaquin
    Garcia, Salvador
    Molina, Daniel
    Herrera, Francisco
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) : 3 - 18
  • [9] Gemant A, 1938, PHILOS MAG, V25, P540
  • [10] Combining convergence and diversity in evolutionary multiobjective optimization
    Laumanns, M
    Thiele, L
    Deb, K
    Zitzler, E
    [J]. EVOLUTIONARY COMPUTATION, 2002, 10 (03) : 263 - 282