Characterization of unitary processes with independent and stationary increments

被引:0
作者
Sahu, Lingaraj [1 ]
Sinha, Kalyan B. [2 ,3 ]
机构
[1] IISER Mohali, Chandigarh 16, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Bangalore 64, Karnataka, India
[3] Indian Inst Sci, Dept Math, Bangalore 12, Karnataka, India
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2010年 / 46卷 / 02期
关键词
Unitary processes; Noise space; Hudson-Parthasarathy equations; STOCHASTIC DIFFERENTIAL-EQUATIONS; EVOLUTIONS; SEMIGROUP; ALGEBRAS; COCYCLES;
D O I
10.1214/09-AIHP327
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.
引用
收藏
页码:575 / 593
页数:19
相关论文
共 15 条
  • [1] ACCARDI L, 1989, LECT NOTES MATH, V1396, P59
  • [2] [Anonymous], 1993, Lecture Notes in Mathematics
  • [3] [Anonymous], 1992, MONOGRAPHS MATH
  • [4] FAGNOLA F, 1992, QUANT PROB REL TOPIC, V7, P139
  • [5] Gelfand I.M., 1964, Applications of Harmonic Analysis, V4
  • [6] GOSWAMI D, 2007, CAMBRIDGE TRACTS MON, V169
  • [7] QUANTUM ITOS FORMULA AND STOCHASTIC EVOLUTIONS
    HUDSON, RL
    PARTHASARATHY, KR
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (03) : 301 - 323
  • [8] ON CHARACTERIZING QUANTUM STOCHASTIC EVOLUTIONS
    HUDSON, RL
    LINDSAY, JM
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 102 : 363 - 369
  • [9] Construction of some quantum stochastic operator cocycles by the semigroup method
    Lindsay, J. Martin
    Wills, Stephen J.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 519 - 529
  • [10] Markovian cocycles on operator algebras adapted to a fock filtration
    Lindsay, JM
    Wills, SJ
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 178 (02) : 269 - 305