Osteogenesis imperfecta: Pathophysiology and current treatment strategies

被引:0
|
作者
Rehberg, Mirko [1 ,2 ]
Etich, Julia [3 ]
Lessmeier, Lennart [4 ,5 ]
Sill, Helge [1 ,2 ]
Netzer, Christian [4 ,5 ]
Semler, Oliver [1 ,2 ]
机构
[1] Univ Cologne, Med Fak, Klin & Poliklin Kinder & Jugendmed, Kerpenerstr 62, D-50931 Cologne, Germany
[2] Univ Cologne, Uniklin Koln, Klin & Poliklin Kinder & Jugendmed, Kerpenerstr 62, D-50931 Cologne, Germany
[3] Orthopad Univ Klin Friedrichshe gGmbH, Dr Rolf M Schwiete Forsch Bereich Arthrose, Frankfurt, Germany
[4] Univ Cologne, Med Fak, Inst Humangenet, Cologne, Germany
[5] Univ Cologne, Uniklin Koln, Inst Humangenet, Cologne, Germany
关键词
Collagen; Therapy; Mutation; Bisphosphonates; Denosumab; MUTATIONS; CHILDREN; FORM; IDENTIFICATION; ADOLESCENTS; PAMIDRONATE; FKBP65; ADULTS; HSP47;
D O I
10.1007/s11825-020-00287-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Osteogenesis imperfecta (OI) is a hereditary disease of the bones and fascia. It is associated with an increased tendency to fracture, deformities of the extremities, and extra-skeletal signs. A short description of the clinical course, diagnostic recommendations and the current treatment are followed by an extensive overview of the genetic and pathophysiological background of the disease and future therapeutic options. Approximately 80% of patients present with mutations in genes coding for collagen (COL1A1/A2). In these patients, no clear correlation between phenotype and genotype is described for the collective. Stop mutations usually cause a quantitative collagen defect, which results in less normal collagen and a mild phenotype. Missense mutations lead to structurally changed collagen (qualitative defect) and to a more severe phenotype. Nonetheless, there is high variability and it is difficult to predict the course of an individual patient. In addition to changes in the collagen coding genes, there are mutations that affect the modification and secretion of collagen. A specific group consists of genes involved in the differentiation of osteoblasts. As with the other genes (which are not referred to in more detail), these are often superior genes, whose function in osteogenesis is not fully understood. Based on the pathophysiological principles, existing treatments may well be more precisely deployed in the future. An example is the receptor activator of nuclear factor kappa-B ligand (RANKL) antibody denosumab, which is more specific than bisphosphonates, and is already used in OI type VI (SERPINF1). Further treatments such as antisclerostin or stem cell therapies are currently being investigated with a focus on pathophysiology.
引用
收藏
页码:372 / 381
页数:10
相关论文
共 50 条
  • [31] Osteogenesis imperfecta
    Salzmann, M.
    Krohn, C.
    Berger, N.
    ORTHOPADE, 2014, 43 (08): : 764 - 771
  • [32] Skeletal Manifestations of Osteogenesis Imperfecta
    Fotiadou, Anastasia N.
    Calleja, Michele
    Hargunani, Rikin
    Keen, Richard
    SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2016, 20 (03) : 279 - 286
  • [33] Bisphosphonate therapy for osteogenesis imperfecta
    Dwan, Kerry
    Phillipi, Carrie A.
    Steiner, Robert D.
    Basel, Donald
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2014, (07):
  • [34] Osteogenesis imperfecta
    Salzmann, M.
    Krohn, C.
    Berger, N.
    ORTHOPADE, 2014, 43 (08): : 764 - 771
  • [35] Osteogenesis imperfecta in adults: phenotypic characteristics and response to treatment in an Irish cohort
    O'Sullivan, E. S.
    van der Kamp, S.
    Kilbane, M.
    McKenna, M.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2014, 183 (02) : 225 - 230
  • [36] Reshaping of Vertebrae during Treatment with Neridronate or Pamidronate in Children with Osteogenesis Imperfecta
    Semler, O.
    Beccard, R.
    Palmisano, D.
    Demant, A.
    Fricke, O.
    Schoenau, E.
    Koerber, F.
    HORMONE RESEARCH IN PAEDIATRICS, 2011, 76 (05): : 321 - 327
  • [37] Evaluation of a Modified Pamidronate Protocol for the Treatment of Osteogenesis Imperfecta
    Palomo, Telma
    Andrade, Maria C.
    Peters, Barbara S. E.
    Reis, Fernanda A.
    Carvalhaes, Joao Tomas A.
    Glorieux, Francis H.
    Rauch, Frank
    Lazaretti-Castro, Marise
    CALCIFIED TISSUE INTERNATIONAL, 2016, 98 (01) : 42 - 48
  • [38] Fractures in Osteogenesis Imperfecta: Pathogenesis, Treatment, Rehabilitation and Prevention
    Nijhuis, Wouter
    Verhoef, Marjolein
    van Bergen, Christiaan
    Weinans, Harrie
    Sakkers, Ralph
    CHILDREN-BASEL, 2022, 9 (02):
  • [39] Genotype and malocclusion in patients with osteogenesis imperfecta
    Jabbour, Z.
    Al-Khateeb, A.
    Eimar, H.
    Retrouvey, J. M.
    Rizkallah, J.
    Glorieux, F. H.
    Rauch, F.
    Tamimi, F.
    ORTHODONTICS & CRANIOFACIAL RESEARCH, 2018, 21 (02) : 71 - 77
  • [40] Advances in the Orthopedic Management of Osteogenesis Imperfecta
    Laron, Dominique
    Pandya, Nirav K.
    ORTHOPEDIC CLINICS OF NORTH AMERICA, 2013, 44 (04) : 565 - +