Statistical optimization of pretreatment of orange processing waste using response surface methodology for bioethanol production

被引:6
|
作者
Aissi, Fatma Zohra [1 ]
El Hadi, Djamel [2 ]
Megateli, Smain [1 ]
Ketfi, Sabrina [1 ]
机构
[1] Univ Saad Dahlab Blida 1, Agrifood Dept, Fac Nat & Life Sci, Lab Sci Food Technol & Sustainable Dev, Blida, Algeria
[2] Univ Saad Dahlab Blida 1, Proc Engn Dept, Fac Technol, Lab Funct Anal Chem Proc, Blida, Algeria
关键词
Orange processing waste; optimization; pretreatment; total sugar yield; bioethanol; PEEL WASTE; HYDROLYSIS; EXTRACTION; ETHANOL; LIQUID; ACID;
D O I
10.1080/15567036.2021.1967519
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study aims to maximize total sugar yield of two varieties of sweet orange processing waste OPW: Valencia Late and Double fine. They were collected from two different Algerian juice factories. The initial total sugar yield of both varieties was 49.33 +/- 0.78% and 44.04 +/- 1.32%, respectively. Therefore, statistical optimization of the pretreatment of orange processing waste powder OPWP was established using sulfuric acid and steam explosion to achieve a high-level rate of total sugar from OPWP. The acid hydrolysis steam explosion used in this study due of its efficiency and simplicity. The hydrolysis factors, such as acid (0.25%, 0.50% and 0.75%), solid loading (2%, 6% and 10%) and time (10 min, 20 min and 30 min), were further optimized using response surface methodology. Results revealed that the yield of total sugar was 74.57% and 70.70% dry weight for Valencia Late and Double fine respectively. The optimized conditions were obtained by 0.5% v/v acid, 2% w/v OPWP and 20 min residence time. The derived regression model shows a strong positive relationship between the obtained yield and the variables with a coefficient of determination (R-2) values of 0.9219 and 0.9367 for Valencia Late and Double fine, respectively. Furthermore, scanning electron microscopy, Fourier transform infrared, X-ray diffraction and thermogravimetric analysis for comparison of untreated and pretreated material confirms that the pretreatment is a crucial step to enhance the total sugar yield, solubilize hemicellulose and remove lignin. These results appear to be a promising source of carbohydrates for producing bioethanol.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Optimization of Fura Production Using Response Surface Methodology
    Jideani, V. A.
    Oloruntoba, R. H.
    Jideani, I. A.
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2010, 13 (02) : 272 - 281
  • [42] Modeling and optimization of alkaline pretreatment conditions for the production of bioethanol from giant reed (Arundo donax L.) biomass using response surface methodology (RSM)
    Shafaei, Hamidreza
    Taghizadeh-Alisaraei, Ahmad
    Abbaszadeh-Mayvan, Ahmad
    Tatari, Aliasghar
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (18) : 21669 - 21684
  • [43] Optimization of fermentation conditions using response surface methodology (RSM) with kinetic studies for the production of bioethanol from rejects of Kappaphycus alvarezii and solid food waste
    Priyadharsini, P.
    Dawn, S. S.
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (11) : 9977 - 9995
  • [44] Optimization of fermentation conditions using response surface methodology (RSM) with kinetic studies for the production of bioethanol from rejects of Kappaphycus alvarezii and solid food waste
    P. Priyadharsini
    S. S. Dawn
    Biomass Conversion and Biorefinery, 2023, 13 : 9977 - 9995
  • [45] Statistical Optimization for Enhanced Production of Cellulase from Sugarcane Bagasse using Response Surface Methodology
    Pachauri, P.
    Sullia, S. B.
    Deshmukh, S.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2016, 75 (03): : 181 - 187
  • [46] Statistical optimization of α-galactosidase production in submerged fermentation by Streptomyces griseoloalbus using response surface methodology
    Anisha, Grace Sathyanesan
    Sukumaran, Rajeev Kumar
    Prema, Parukuttyamma
    FOOD TECHNOLOGY AND BIOTECHNOLOGY, 2008, 46 (02) : 171 - 177
  • [47] Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production
    Ayesha Saleem
    Ali Hussain
    Asma Chaudhary
    Qurat-ul-Ain Ahmad
    Mehwish Iqtedar
    Arshad Javid
    Afia Muhammad Akram
    Biomass Conversion and Biorefinery, 2022, 12 : 1513 - 1524
  • [48] OPTIMIZATION OF FERMENTATION PARAMETERS USING RESPONSE SURFACE METHODOLOGY FOR BIOHYDROGEN PRODUCTION FROM URBAN WASTE
    Antony, Annam Renita
    Kumar, Narendra
    Salla, Sunitha
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2018, 80 (02): : 117 - 126
  • [49] Optimization of enzymatic hydrolysis of waste cotton fibers for nanoparticles production using response surface methodology
    T. Fattahi Meyabadi
    F. Dadashian
    Fibers and Polymers, 2012, 13 : 313 - 321
  • [50] Optimization of Enzymatic Hydrolysis of Waste Cotton Fibers for Nanoparticles Production Using Response Surface Methodology
    Meyabadi, T. Fattahi
    Dadashian, F.
    FIBERS AND POLYMERS, 2012, 13 (03) : 313 - 321