Low-temperature exchange coupling between Fe2O3 and FeTiO3:: Insight into the mechanism of giant exchange bias in a natural nanoscale intergrowth

被引:28
作者
Harrison, Richard J.
McEnroe, Suzanne A.
Robinson, Peter
Carter-Stiglitz, Brian
Palin, Erika J.
Kasama, Takeshi
机构
[1] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[2] Geol Survey Norway, N-7491 Trondheim, Norway
[3] Univ Minnesota, Newton Horace Winchell Sch Earth Sci, Inst Rock Magnet, Minneapolis, MN 55455 USA
[4] Univ Cambridge, Dept Mat Sci, Cambridge CB2 3QZ, England
基金
英国自然环境研究理事会;
关键词
D O I
10.1103/PhysRevB.76.174436
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Exchange bias (> 1 T at 10 K) has been observed in natural sample of Fe2O3 containing abundant nanoscale exsolution lamellae of FeTiO3. Exchange bias is first observed below the Neel temperature of FeTiO3 (55 K). Possible interface magnetic structures are explored within the framework of a classical Heisenberg model using Monte Carlo simulations. The simulations predict a threshold value of the Fe2O3 anisotropy constant, below which Fe3+ spins become tilted out of the basal plane in the vicinity of the interfaces. This tilting creates a c-axis component of magnetization in the Fe2O3 host that couples to the c-axis magnetization of the FeTiO3 lamellae. Exchange interactions across the interfaces are frustrated when the FeTiO3 lamellae contain an even number of Fe2+ layers, resulting in zero net exchange bias. Lamellae containing an odd number of Fe2+ layers, however, are negatively exchange coupled to the Fe2O3 host across both (001) bounding surfaces, and are the dominant source of exchange bias. Exchange bias is observed whenever there is a significant c-axis component to both the Fe2O3 magnetization and the applied field. An exchange bias of 0.9 T was obtained with an anisotropy constant of 0.1 K.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Dependence of exchange coupling on the surface roughness and structure in α-Fe2O3/NiFe and NiFe/α-Fe2O3 bilayers [J].
Bae, S ;
Judy, JH ;
Egelhoff, WF ;
Chen, PJ .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6650-6652
[2]   Exchange anisotropy - a review [J].
Berkowitz, AE ;
Takano, K .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :552-570
[3]   Magnetic properties of hematite nanoparticles [J].
Bodker, F ;
Hansen, MF ;
Koch, CB ;
Lefmann, K ;
Morup, S .
PHYSICAL REVIEW B, 2000, 61 (10) :6826-6838
[4]   Controlling the exchange interaction using the spin-flip transition of antiferromagnetic spins in Ni81Fe19/α-Fe2O3 -: art. no. 180402 [J].
Dho, J ;
Leung, CW ;
Barber, ZH ;
Blamire, MG .
PHYSICAL REVIEW B, 2005, 71 (18)
[5]  
Dunlop J., 1997, ROCK MAGNETISM FUNDA, V1st, DOI DOI 10.1017/CBO9780511612794
[6]  
FABIAN K, COMMUNICATION
[7]   Spin rotation in α-Fe2O3 nanoparticles by interparticle interactions -: art. no. 027202 [J].
Frandsen, C ;
Morup, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (02)
[8]   Inter-particle interactions in composites of antiferromagnetic nanoparticles [J].
Frandsen, C ;
Morup, S .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 266 (1-2) :36-48
[9]   Spin orientation of hematite (α-Fe2O3) Nanoparticles during the Morin transition [J].
Gee, SH ;
Hong, YK ;
Sur, JC ;
Erickson, DW ;
Park, MH ;
Jeffers, F .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) :2691-2693
[10]   Microstructure and magnetism in the ilmenite-hematite solid solution: A Monte Carlo simulation study [J].
Harrison, Richard J. .
AMERICAN MINERALOGIST, 2006, 91 (07) :1006-1023