Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation

被引:43
作者
Le, Mai Q. [1 ,2 ]
Pagter, Majken [1 ]
Hincha, Dirk K. [1 ]
机构
[1] Max Planck Inst Mol Pflanzenphysiol, D-14476 Golm, Germany
[2] Hanoi Univ Sci, Hanoi, Vietnam
关键词
Arabidospis thaliana; CBF regulon; Cold acclimation; Freezing tolerance; Transcription factor; Sub-zero acclimation; FREEZING TOLERANCE; TRANSCRIPTION FACTORS; NATURAL VARIATION; CLINAL VARIATION; DEGREES-C; DROUGHT; IDENTIFICATION; PATHWAYS; ROLES; ACID;
D O I
10.1007/s11103-014-0256-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 A degrees C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5 % of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 61 条
  • [1] A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance
    Agarwal, Manu
    Hao, Yujin
    Kapoor, Avnish
    Dong, Chun-Hai
    Fujii, Hiroaki
    Zheng, Xianwu
    Zhu, Jian-Kang
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) : 37636 - 37645
  • [2] [Anonymous], 2010, R LANG ENV STAT COMP
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome
    Bieniawska, Zuzanna
    Espinoza, Carmen
    Schlereth, Armin
    Sulpice, Ronan
    Hincha, Dirk K.
    Hannah, Matthew A.
    [J]. PLANT PHYSIOLOGY, 2008, 147 (01) : 263 - 279
  • [5] Whole-genome sequencing of multiple Arabidopsis thaliana populations
    Cao, Jun
    Schneeberger, Korbinian
    Ossowski, Stephan
    Guenther, Torsten
    Bender, Sebastian
    Fitz, Joffrey
    Koenig, Daniel
    Lanz, Christa
    Stegle, Oliver
    Lippert, Christoph
    Wang, Xi
    Ott, Felix
    Mueller, Jonas
    Alonso-Blanco, Carlos
    Borgwardt, Karsten
    Schmid, Karl J.
    Weigel, Detlef
    [J]. NATURE GENETICS, 2011, 43 (10) : 956 - U60
  • [6] CASTONGUAY Y, 1993, PLANT CELL PHYSIOL, V34, P31
  • [7] The role of WRKY transcription factors in plant abiotic stresses
    Chen, Ligang
    Song, Yu
    Li, Shujia
    Zhang, Liping
    Zou, Changsong
    Yu, Diqiu
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 120 - 128
  • [8] Cold stress regulation of gene expression in plants
    Chinnusamy, Viswanathan
    Zhu, Jianhua
    Zhu, Jian-Kang
    [J]. TRENDS IN PLANT SCIENCE, 2007, 12 (10) : 444 - 451
  • [9] Regulation of ABA dependent wound induced spreading cell death by MYB108
    Cui, Fuqiang
    Brosche, Mikael
    Sipari, Nina
    Tang, Saijun
    Overmyer, Kirk
    [J]. NEW PHYTOLOGIST, 2013, 200 (03) : 634 - 640
  • [10] Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis
    Czechowski, T
    Stitt, M
    Altmann, T
    Udvardi, MK
    Scheible, WR
    [J]. PLANT PHYSIOLOGY, 2005, 139 (01) : 5 - 17