Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette

被引:50
作者
Huang, Yuanyuan [1 ,2 ]
Li, Lu [1 ,2 ]
Xie, Shan [1 ,2 ]
Zhao, Nannan [1 ,2 ]
Han, Shuangyan [1 ,2 ]
Lin, Ying [1 ,2 ]
Zheng, Suiping [1 ,2 ]
机构
[1] South China Univ Technol, Sch Biol & Biol Engn, Guangdong Key Lab Fermentat & Enzyme Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Biol & Biol Engn, Guangdong Res Ctr Ind Enzyme & Green Mfg Technol, Guangzhou 510006, Guangdong, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
GENE REPLACEMENT; PICHIA-PASTORIS; EXPRESSION; IDENTIFICATION; RECOMBINATION; SELECTION; DELETION; SYSTEM; FAMILY;
D O I
10.1038/s41598-017-08352-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene manipulation is essential for metabolic engineering and synthetic biology, but the current general gene manipulation methods are not applicable to the non-model strain Corynebacterium glutamicum (C. glutamicum) ATCC14067, which is used for amino acid production. Here, we report an effective and sequential deletion method for C. glutamicum ATCC14067 using the exonuclease-recombinase pair RecE + RecT (RecET) for recombineering via a designed self-excisable linear double-strand DNA (dsDNA) cassette, which contains the Cre/loxP system, to accomplish markerless deletion. To the best of our knowledge, this is the first effective and simple strategy for recombination with markerless deletion in C. glutamicum ATCC14067. This strategy provides a simple markerless deletion strategy for C. glutamicum and builds a solid basis for producer construction.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] Substrate and Target Sequence Length Influence RecTEPsy Recombineering Efficiency in Pseudomonas syringae
    Bao, Zhongmeng
    Cartinhour, Sam
    Swingle, Bryan
    [J]. PLOS ONE, 2012, 7 (11):
  • [2] Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory
    Becker, Judith
    Wittmann, Christoph
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (04) : 631 - 640
  • [3] From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
    Becker, Judith
    Zelder, Oskar
    Haefner, Stefan
    Schroeder, Hartwig
    Wittmann, Christoph
    [J]. METABOLIC ENGINEERING, 2011, 13 (02) : 159 - 168
  • [4] Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation
    Binder, Stephan
    Siedler, Solvej
    Marienhagen, Jan
    Bott, Michael
    Eggeling, Lothar
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (12) : 6360 - 6369
  • [5] A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
    Bommareddy, Rajesh Reddy
    Chen, Zhen
    Rappert, Sugima
    Zeng, An-Ping
    [J]. METABOLIC ENGINEERING, 2014, 25 : 30 - 37
  • [6] Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi)
    Cleto, Sara
    Jensen, Jaide V. K.
    Wendisch, Volker F.
    Lu, Timothy K.
    [J]. ACS SYNTHETIC BIOLOGY, 2016, 5 (05): : 375 - 385
  • [7] Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages
    Datta, Simanti
    Costantino, Nina
    Zhou, Xiaomei
    Court, Donald L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (05) : 1626 - 1631
  • [8] Eggeling L., 2005, Handbook of Corynebacterium glutamicum
  • [9] CHARACTERIZATION OF BACTERIOPHAGE-LAMBDA REVERSE AS AN ESCHERICHIA-COLI PHAGE CARRYING A UNIQUE SET OF HOST-DERIVED RECOMBINATION FUNCTIONS
    GOTTESMA.MM
    GOTTESMA.ME
    GOTTESMA.S
    GELLERT, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1974, 88 (02) : 471 - &
  • [10] Hermann T, 2001, ELECTROPHORESIS, V22, P1712, DOI 10.1002/1522-2683(200105)22:9<1712::AID-ELPS1712>3.0.CO