共 23 条
- [21] Coefficient bounds for a subclass of univalent functions of complex order associated with Chebyshev polynomials defined by q-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-$$\end{document} derivative operator Afrika Matematika, 2023, 34 (3)
- [22] Some Approximation Results on Compact Sets by (p, q)-Bernstein–Faber Polynomials, q>p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>p>1$$\end{document} Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 (5): : 2585 - 2593
- [23] A subclass with bi-univalence involving (p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {p}}$$\end{document},q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {q}}$$\end{document})- Lucas polynomials and its coefficient bounds Boletín de la Sociedad Matemática Mexicana, 2020, 26 (3) : 1015 - 1022