Canonical form of Euler-Lagrange equations and gauge symmetries

被引:2
作者
Geyer, B [1 ]
Gitman, DM
Tyutin, IV
机构
[1] Univ Leipzig, Nat Wissensch Theoret Zentrum, Leipzig, Germany
[2] Univ Sao Paulo, Inst Phys, Sao Paulo, Brazil
[3] PN Lebedev Phys Inst, Moscow 117924, Russia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 23期
关键词
D O I
10.1088/0305-4470/36/23/321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the,gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local,theories all the gauge generators are local in time operators.
引用
收藏
页码:6587 / 6609
页数:23
相关论文
共 50 条
[41]   Utilization of Euler-Lagrange Equations in Circuits with Memory Elements [J].
Biolek, Zdenek ;
Biolek, Dalibor ;
Biolkova, Viera .
RADIOENGINEERING, 2016, 25 (04) :783-789
[42]   On Lagrangians with Reduced-Order Euler-Lagrange Equations [J].
Saunders, David .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[43]   Invariant Euler-Lagrange equations and the invariant variational bicomplex [J].
Kogan, IA ;
Olver, PJ .
ACTA APPLICANDAE MATHEMATICAE, 2003, 76 (02) :137-193
[44]   Fractional Euler-Lagrange equations of motion in fractional space [J].
Muslih, Sami I. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1209-1216
[45]   Fractional Euler-Lagrange Equations Applied to Oscillatory Systems [J].
David, Sergio Adriani ;
Valentim, Carlos Alberto, Jr. .
MATHEMATICS, 2015, 3 (02) :258-272
[46]   ALMOST-PERIODIC OSCILLATIONS OF EULER-LAGRANGE EQUATIONS [J].
BLOT, J .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (02) :285-304
[47]   Theorem on the existence and uniqueness of the solution to Euler-Lagrange equations [J].
Zhao, Wei-Jia ;
Pan, Zhen-Kuan ;
Chen, Li-Qun .
Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2003, 20 (03)
[48]   EULER-LAGRANGE EQUATIONS FOR FUNCTIONALS DEFINED ON FRECHET MANIFOLDS [J].
Antonio Vallejo, Jose .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (04) :443-454
[49]   Variational problems with fractional derivatives: Euler-Lagrange equations [J].
Atanackovic, T. M. ;
Konjik, S. ;
Pilipovic, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
[50]   AV-differential geometry: Euler-Lagrange equations [J].
Grabowska, Katarzyna ;
Grabowski, Janusz ;
Urbanski, Pawel .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) :1984-1998