Low-cycle fatigue of metallic glass nanowires

被引:40
作者
Luo, Jian [1 ]
Dahmen, Karin [2 ]
Liaw, Peter K. [3 ]
Shi, Yunfeng [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Metallic glasses; Nanowires; Low-cycle fatigue; Fracture; Work hardening; PLASTIC STRAIN AMPLITUDE; SIMPLE MONATOMIC LIQUID; MOLECULAR-DYNAMICS; POLYCRYSTALLINE COPPER; STRUCTURAL ANISOTROPY; TENSILE DUCTILITY; DAMAGE; RANGE; LIMIT; TEMPERATURE;
D O I
10.1016/j.actamat.2014.12.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-cycle fatigue fracture of metallic glass nanowires was investigated using molecular dynamics simulations. The nanowires exhibit work hardening or softening, depending on the applied load. The structural origin of the hardening/softening response was identified as the decrease/increase of the tetrahedral clusters, as a result of the non-hardsphere nature of the glass model. The fatigue fracture is caused by shear banding initiated from the surface. The plastic-strain-controlled fatigue tests show that the fatigue life follows the Coffin-Manson relation. Such power-law form originates from plastic-strain-dependent microscopic damage accumulation. Lastly, the effect of a notch on low-cycle fatigue of nanowires in terms of failure mode and fatigue life was also discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 50 条
  • [21] Low-cycle Fatigue Testing of Silicon Resonators
    Theillet, Pierre-Olivier
    Pierron, Olivier N.
    RELIABILITY, PACKAGING, TESTING, AND CHARACTERIZATION OF MEMS/MOEMS AND NANODEVICES VIII, 2009, 7206
  • [22] Low-cycle fatigue hysteresis by thermographic and digital image correlation methodologies: a first approach
    La Rosa, Guido
    Clienti, Carmelo
    Marino, Adriana
    Garrano, Cugno
    Lo Savio, Fabio
    ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 : 1583 - 1588
  • [23] Tensile low-cycle fatigue performance and life prediction of high-strength bolts
    Zhang, Wenyuan
    Xie, Jingyi
    Li, Tongxin
    Ding, Yukun
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2022, 197
  • [24] Low-cycle fatigue of the light advanced materials
    Unigovski, Yakov B.
    Grinberg, Ariel
    Gutman, Emmanuel M.
    FATIGUE DESIGN 2013, INTERNATIONAL CONFERENCE PROCEEDINGS, 2013, 66 : 713 - 722
  • [25] Effect of low hydrogenation on the low-cycle fatigue of zirconium alloy
    Nikulin, S. A.
    Rozhnov, A. B.
    Nechaykina, T. A.
    Rogachev, S. O.
    Zadorozhnyy, M. Yu.
    Alsheikh, Hanan
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 111 : 1 - 6
  • [27] A mechanism governing oxidation-assisted low-cycle fatigue of superalloys
    Evans, A. G.
    He, M. Y.
    Suzuki, A.
    Gigliotti, M.
    Hazel, B.
    Pollock, T. M.
    ACTA MATERIALIA, 2009, 57 (10) : 2969 - 2983
  • [28] Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels
    Adamczyk-Cieslak, Boguslawa
    Koralnik, Milena
    Kuziak, Roman
    Brynk, Tomasz
    Zygmunt, Tomasz
    Mizera, Jaroslaw
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 747 : 144 - 153
  • [30] The effect of Zr on the low-cycle fatigue behavior of NiAl at 1000 K
    Lerch, BA
    Noebe, RD
    Rao, KBS
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 1998, 7 (02) : 205 - 213