Fractional order dynamical phenomena in a GA

被引:0
作者
Pires, EJS
Machado, JAT
Oliveira, PBD
机构
[1] Univ Tras Montes & Alto Douro, Dept Engn Electrotecn, P-5000911 Vila Real, Portugal
[2] Inst Super Engn Porto, Dept Engn Electrotecn, P-4200072 Oporto, Portugal
来源
GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS | 2003年 / 2723卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work addresses the fractional-order dynamics during the evolution of a GA, which generates a robot manipulator trajectory. In order to investigate the phenomena involved in the GA population evolution, the crossover is exposed to excitation perturbations and the corresponding fitness variations are evaluated. The input/output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.
引用
收藏
页码:510 / 511
页数:2
相关论文
共 50 条
[41]   Controllability Results for Nonlinear Fractional-Order Dynamical Systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) :33-44
[42]   The analytical analysis of nonlinear fractional-order dynamical models [J].
Xu, Jiabin ;
Khan, Hassan ;
Shah, Rasool ;
Alderremy, A. A. ;
Aly, Shaban ;
Baleanu, Dumitru .
AIMS MATHEMATICS, 2021, 6 (06) :6201-6219
[43]   Dynamical analysis of fractional-order modified logistic model [J].
Abbas, Syed ;
Banerjee, Malay ;
Momani, Shaher .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1098-1104
[44]   CONTROLLABILITY OF NONLINEAR STOCHASTIC FRACTIONAL HIGHER ORDER DYNAMICAL SYSTEMS [J].
Lizzy, R. Mabel ;
Balachandran, K. ;
Ma, Yong-Ki .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) :1063-1085
[45]   Coupling Design for Synchronization of Fractional-order Dynamical Networks [J].
Wang Junwei ;
Zhang Yanbin ;
Zeng Li .
PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, :434-438
[46]   Cluster synchronization in fractional-order complex dynamical networks [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Sun, Jian ;
Ma, Tiedong .
PHYSICS LETTERS A, 2012, 376 (35) :2381-2388
[47]   Sliding mode observer for fractional order nonlinear dynamical systems [J].
Etlili, Dorsaf ;
Khedher, Atef ;
Errachdi, Ayachi .
PROCEEDINGS OF THE 2022 5TH INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES IC_ASET'2022), 2022, :103-108
[48]   Chaos Control and Synchronization of Dynamical Model of Happiness with Fractional Order [J].
Song, Lei ;
Yang, Jianying .
ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, :910-915
[49]   PERIODIC DISTURBANCE REJECTION FOR FRACTIONAL-ORDER DYNAMICAL SYSTEMS [J].
Fedele, Giuseppe ;
Ferrise, Andrea .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :603-620
[50]   Dynamical Analysis of a Fractional-Order Hantavirus Infection Model [J].
Moustafa, Mahmoud ;
Mohd, Mohd Hafiz ;
Ismail, Ahmad Izani ;
Abdullah, Farah Aini .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (02) :171-181