Fractional order dynamical phenomena in a GA

被引:0
作者
Pires, EJS
Machado, JAT
Oliveira, PBD
机构
[1] Univ Tras Montes & Alto Douro, Dept Engn Electrotecn, P-5000911 Vila Real, Portugal
[2] Inst Super Engn Porto, Dept Engn Electrotecn, P-4200072 Oporto, Portugal
来源
GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS | 2003年 / 2723卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work addresses the fractional-order dynamics during the evolution of a GA, which generates a robot manipulator trajectory. In order to investigate the phenomena involved in the GA population evolution, the crossover is exposed to excitation perturbations and the corresponding fitness variations are evaluated. The input/output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.
引用
收藏
页码:510 / 511
页数:2
相关论文
共 50 条
[31]   Dynamical Behaviour and Chaotic Phenomena of HIV Infection through Fractional Calculus [J].
Jan, Rashid ;
Khan, Amin ;
Boulaaras, Salah ;
Ahmed Zubair, Sulima .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
[32]   Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative [J].
Balci, Ercan ;
Ozturk, Ilhan ;
Kartal, Senol .
CHAOS SOLITONS & FRACTALS, 2019, 123 :43-51
[33]   FAGA: Hybridization of Fractional Order ABC and GA for Optimization [J].
Gunasekaran, Lavanya ;
Subramaniam, Srinivasan .
INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2016, 13 (6B) :1045-1053
[34]   Controllability of fractional order damped dynamical systems with distributed delays [J].
Arthi, G. ;
Park, Ju H. ;
Suganya, K. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 165 :74-91
[35]   On solutions of fuzzy fractional order complex population dynamical model [J].
Ullah, Abd ;
Ullah, Aman ;
Ahmad, Shabir ;
Ahmad, Imtiaz ;
Akgul, Ali .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) :4595-4615
[36]   Nonexistence of invariant manifolds in fractional-order dynamical systems [J].
Sachin Bhalekar ;
Madhuri Patil .
Nonlinear Dynamics, 2020, 102 :2417-2431
[37]   On stability, persistence, and Hopf bifurcation in fractional order dynamical systems [J].
El-Saka, H. A. ;
Ahmed, E. ;
Shehata, M. I. ;
El-Sayed, A. M. A. .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :121-126
[38]   Singular points in the solution trajectories of fractional order dynamical systems [J].
Bhalekar, Sachin ;
Patil, Madhuri .
CHAOS, 2018, 28 (11)
[39]   Optimal reduced-order approximation of fractional dynamical systems [J].
Mansouri, R. ;
Bettayeb, M. ;
Djennoune, S. .
INTELLIGENT SYSTEMS AND AUTOMATION, 2008, 1019 :127-+
[40]   On stability, persistence, and Hopf bifurcation in fractional order dynamical systems [J].
H. A. El-Saka ;
E. Ahmed ;
M. I. Shehata ;
A. M. A. El-Sayed .
Nonlinear Dynamics, 2009, 56 :121-126