L3,∞-solutions of the Navier-Stokes equations and backward uniqueness

被引:399
作者
Escauriaza, L [1 ]
Seregin, G
Sverák, V
机构
[1] Univ Basque Country, Dipartimento Matemat, Bilbao, Spain
[2] VA Steklov Math Inst, St Petersburg 191011, Russia
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
D O I
10.1070/RM2003v058n02ABEH000609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the L-3,L-infinity-solutions of the Cauchy problem for the three-dimensional Navier-Stokes equations are smooth.
引用
收藏
页码:211 / 250
页数:40
相关论文
共 47 条
[1]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[2]  
da Veiga HB, 2000, J MATH FLUID MECH, V2, P99
[3]  
Escauriaza L, 2001, INDIANA U MATH J, V50, P1149
[4]   Carleman inequalities and the heat operator [J].
Escauriaza, L .
DUKE MATHEMATICAL JOURNAL, 2000, 104 (01) :113-127
[5]  
ESCAURIAZA L, 2003, IN PRESS ALGEBRA ANA, V15
[6]  
Escauriaza L., 2002, ZAP NAUCH SEMINAROV, V288, P100
[7]  
ESCAURIAZA L, IN PRESS ARCH RATION
[8]  
ESCAURIAZA L, IN PRESS ARK MAT
[9]  
Galdi GP, 2000, ADV MATH FLUID MECH, P1
[10]   ABSTRACT LP ESTIMATES FOR THE CAUCHY-PROBLEM WITH APPLICATIONS TO THE NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS [J].
GIGA, Y ;
SOHR, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (01) :72-94