Efficient Prediction of the EM Response of Reflectarray Antenna Elements by an Advanced Statistical Learning Method

被引:55
作者
Salucci, Marco [1 ]
Tenuti, Lorenza [1 ]
Oliveri, Giacomo [1 ,2 ]
Massa, Andrea [1 ,2 ,3 ]
机构
[1] EIEDIA UniTN Univ Trento, ELEDIA Res Ctr, I-38123 Trento, Italy
[2] ELEDIA Res Ctr, ELEDIA UMR L2S 8506, F-91192 Gif Sur Yvette, France
[3] Univ Carlos III Madrid, ELEDIA, ELEDIA Res Ctr, Leganes 28911, Spain
关键词
Computational electromagnetics; ordinary kriging (OK); reflectarrays; scattering matrix; statistical learning; DESIGN;
D O I
10.1109/TAP.2018.2835566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An innovative strategy based on an advanced statistical learning method is introduced to efficiently and accurately predict the electromagnetic response of complex-shaped reflectarray elements. The computation of the scattering coefficients of periodic arrangements, characterized by an arbitrary number of degrees of freedom, is first recast as a vectorial regression problem and then solved with a learning-by-example strategy exploiting the ordinary kriging paradigm. A set of representative numerical experiments dealing with different element geometries is presented to assess the accuracy, the computational efficiency, and the flexibility of the proposed technique also in comparison with state-of-the-art machine learning methods.
引用
收藏
页码:3995 / 4007
页数:13
相关论文
共 38 条
  • [1] [Anonymous], 2008, Engineering Design Via Surrogate Modelling: A Practical Guide
  • [2] [Anonymous], 2007, 2 EUROPEAN C ANTENNA
  • [3] [Anonymous], 2008, INT J SIMUL MULTIDIS
  • [4] [Anonymous], THESIS
  • [5] [Anonymous], 2002, Report No. IMM-REP-2002-12
  • [6] [Anonymous], 1999, ADV KERNEL METHODS S
  • [7] Berry D., 1963, IEEE T ANTENN PROPAG, V11, P645, DOI DOI 10.1109/TAP.1963.1138112
  • [8] BRESCIANI D, 1993, IEEE AP-S, P1960, DOI 10.1109/APS.1993.385592
  • [9] Contu S., 1985, Electromagnetics, V5, P285, DOI 10.1080/02726348508908153
  • [10] Costa J.-P., 1999, IEEE EURASIP Workshop on Nonlinear Signal and Image Processing, P1