Role of Cytoplasmic Alkalization and Nitric Oxide in Ethylene-induced Stomatal Closure in Arabidopsis

被引:0
|
作者
Shi, Chenyu [1 ,2 ]
Chen, Feifei [1 ]
Peng, Tian [3 ]
She, Xiaoping [1 ]
机构
[1] Shaanxi Normal Univ, Sch Life Sci, Xian 710062, Shaanxi, Peoples R China
[2] Hechi Univ, Sch Chem & Bioengn, Yizhou 546300, Peoples R China
[3] Xian Tie Yi High Sch, Xian 710054, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Ethylene; Cytosol alkalization; NO synthesis; Stomatal closure; HYDROGEN-PEROXIDE H2O2; ABSCISIC-ACID; GUARD-CELLS; CYTOSOLIC PH; VICIA-FABA; SIGNAL-TRANSDUCTION; METHYL JASMONATE; ABIOTIC STRESS; CROSS-TALK; PLANTS;
D O I
10.17957/IJAB/15.0429
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Ethylene-induced stomatal closure is well-known. However, the mechanism by which ethylene closes stomata remains clear. This research was conducted to explore the roles of guard cell cytoplasmic alkalization and nitric oxide (NO) and the relationship between them during stomatal closure by ethylene. To achieve this goal, we used pharmacological approach, confocal laser scanning microscope and Arabidopsis mutant etr1-1 and etr1-3, which have defect in ethylene perception and Nia2-1, Nia1-2 and Nia1-2/Nia2-5, which are NO generation enzyme nitrate reductase (NR) mutant. Our data show that ethylene precursor ACC induced stomatal closure by promoting guard cell cytoplasmic alkalization and subsequent NO synthesis. ACC caused the rises in cytosol pH and NO level and promoted stomatal closing in the wild type but did not in mutant etr1-1 and etr1-3. Furthermore, ACC failed to induce guard cells cytosol alkalization in the wild type in the presence of butyric acid and NO generation in Nia1-2 and Nia1-2/Nia2-5, which is coincide with its effects on stomatal aperture in these plants. Cytosol alkalization and Nia1-dependent NO generation were vital for ethylene-led reduction of stomatal aperture. Moreover, the rise in cytosol pH was prerequisite for NO production by ethylene. Butyric acid prevented ACC-triggered NO synthesis in the wild type but ACC enhanced cytosol pH in Nia1-2 and Nia1-2/Nia2-5. SNP rescued the defect of ACC-led stomata closing in the wild type in the presence of butyric acid but methylamine did not reverse the impairment of ACC-led stomata closing in Nia1-2 and Nia1-2/Nia2-5. Taken together, the present study unambiguously reveals that ethylene induces guard cell cytosol alkalization, and then promotes Nia1-dependent NO synthesis and finally initiates stomata closing in Arabidopsis. (C) 2017 Friends Science Publishers
引用
收藏
页码:1220 / 1226
页数:7
相关论文
共 50 条
  • [31] Nitric oxide-induced phosphatidic acid accumulation:: a role for phospholipases C and D in stomatal closure
    Distefano, Ayelen M.
    Garcia-Mata, Carlos
    Lamattina, Lorenzo
    Laxalt, Ana M.
    PLANT CELL AND ENVIRONMENT, 2008, 31 (02): : 187 - 194
  • [32] Ozone and nitric oxide interaction in Arabidopsis thaliana A role for ethylene?
    Ahlfors, Reetta
    Brosche, Mikael
    Kangasjarvi, Jaakko
    PLANT SIGNALING & BEHAVIOR, 2009, 4 (09) : 878 - 879
  • [33] Is nitric oxide a critical key factor in ABA-induced stomatal closure?
    van Meeteren, Uulke
    Kaiser, Elias
    Matamoros, Priscila Malcolm
    Verdonk, Julian C.
    Aliniaeifard, Sasan
    JOURNAL OF EXPERIMENTAL BOTANY, 2020, 71 (01) : 399 - 410
  • [34] The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean
    He, JM
    Xu, H
    She, XP
    Song, XG
    Zhao, WM
    FUNCTIONAL PLANT BIOLOGY, 2005, 32 (03) : 237 - 247
  • [35] Update on roles of nitric oxide in regulating stomatal closure
    Sun, Li Rong
    Yue, Cai Meng
    Hao, Fu Shun
    PLANT SIGNALING & BEHAVIOR, 2019, 14 (10)
  • [36] A new role for an old enzyme:: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana
    Desikan, R
    Griffiths, R
    Hancock, J
    Neill, S
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) : 16314 - 16318
  • [37] Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba
    Song, X. G.
    She, X. P.
    Yue, M.
    Liu, Y. E.
    Wang, Y. X.
    Zhu, X.
    Huang, A. X.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2014, 61 (03) : 390 - 396
  • [38] Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba
    X. G. Song
    X. P. She
    M. Yue
    Y. E. Liu
    Y. X. Wang
    X. Zhu
    A. X. Huang
    Russian Journal of Plant Physiology, 2014, 61 : 390 - 396
  • [39] Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis
    Benschop, Joris J.
    Millenaar, Frank F.
    Smeets, Maaike E.
    van Zanten, Martijn
    Voesenek, Laurentius A. C. J.
    Peeters, Anton J. M.
    PLANT PHYSIOLOGY, 2007, 143 (02) : 1013 - 1023
  • [40] Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins
    Vandenbussche, Filip
    Vancompernolle, Bram
    Rieu, Ivo
    Ahmad, Margaret
    Phillips, Andy
    Moritz, Thomas
    Hedden, Peter
    Van Der Straeten, Dominique
    JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (15-16) : 4269 - 4281