Fast UD Factorization-Based RLS Online Parameter Identification for Model-Based Condition Monitoring of Lithium-ion Batteries

被引:0
|
作者
Kim, Taesic [1 ]
Wang, Yebin [1 ]
Sahinoglu, Zafer [1 ]
Wada, Toshihiro [1 ]
Hara, Satoshi [1 ]
Qiao, Wei [1 ]
机构
[1] Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA
来源
2014 AMERICAN CONTROL CONFERENCE (ACC) | 2014年
关键词
Fast UD recursive least square (FUDRLS); lithium-ion battery; parameter identification; variable forgetting factor (VF); MANAGEMENT-SYSTEMS; PART; 2; STATE; PACKS; IMPLEMENTATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel parameter identification method for model-based condition monitoring of lithium-ion batteries. A fast UD factorization-based recursive least square (FUDRLS) algorithm is developed for identifying time-varying electrical parameters of a battery model. The proposed algorithm can be used for online state of charge, state of health and state of power estimation for lithium-ion batteries. The proposed method is more numerically stable than conventional recursive least square (RLS)-based parameter estimation methods and faster than the existing UD RLS-based method. Moreover, a variable forgetting factor (VF) is included in the FUDRLS to optimize its performance. Due to its low complexity and numerical stability, the proposed method is suitable for the real-time embedded Battery Management System (BMS). Simulation and experimental results for a polymer lithium-ion battery are provided to validate the proposed method.
引用
收藏
页码:4410 / 4415
页数:6
相关论文
共 50 条
  • [1] Model-based condition monitoring for lithium-ion batteries
    Kim, Taesic
    Wang, Yebin
    Fang, Huazhen
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    Qiao, Wei
    JOURNAL OF POWER SOURCES, 2015, 295 : 16 - 27
  • [2] Hysteresis Modeling for Model-Based Condition Monitoring of Lithium-Ion Batteries
    Kim, Taesic
    Qiao, Wei
    Qu, Liayn
    2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2015, : 5068 - 5073
  • [3] An On-Board Model-Based Condition Monitoring for Lithium-Ion Batteries
    Kim, Taesic
    Adhikaree, Amit
    Pandey, Rajendra
    Kang, Dae-Wook
    Kim, Myoungho
    Oh, Chang-Yeol
    Baek, Ju-Won
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (02) : 1835 - 1843
  • [4] Model based condition monitoring in lithium-ion batteries
    Singh, Amardeep
    Izadian, Afshin
    Anwar, Sohel
    JOURNAL OF POWER SOURCES, 2014, 268 : 459 - 468
  • [5] Model-based On-board Monitoring for Lithium-Ion Batteries
    Remmlinger, Juergen
    Buchholz, Michael
    Dietmayer, Klaus
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) : 282 - 295
  • [6] An Online Condition-Based Parameter Identification Switching Algorithm for Lithium-Ion Batteries in Electric Vehicles
    Huang, Cong-Sheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 1701 - 1709
  • [7] A New Model-Based Lithium-Ion Battery Online Monitoring Structure
    Meng, Jianwen
    Boukhnifer, Moussa
    Diallo, Demba
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-PARIS), 2019, : 24 - 29
  • [8] A New Hybrid Filter-Based Online Condition Monitoring for Lithium-Ion Batteries
    Kim, Taesic
    Adhikaree, Amit
    Kang, Daewook
    Kim, Myoungho
    Baek, Juwon
    2017 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2017, : 22 - 27
  • [9] A Hybrid Data-Driven and Model-Based Method for Modeling and Parameter Identification of Lithium-Ion Batteries
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (06) : 7635 - 7645
  • [10] Model-based state estimation for lithium-ion batteries
    Rausch, Matthias
    Klein, Reinhardt
    Streif, Stefan
    Pankiewitz, Christian
    Findeisen, Rolf
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) : 296 - 311