Kirchhoff-Type Boundary-Value Problems on the Real Line
被引:0
作者:
Heidarkhani, Shapour
论文数: 0引用数: 0
h-index: 0
机构:
Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, IranRazi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
Heidarkhani, Shapour
[1
]
Salari, Amjad
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Kermanshah Branch, Young Researchers & Elite Club, Kermanshah, IranRazi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
Salari, Amjad
[2
]
Barilla, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Messina, Dept Econ, Via Verdi 75, Messina, ItalyRazi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
Barilla, David
[3
]
机构:
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Islamic Azad Univ, Kermanshah Branch, Young Researchers & Elite Club, Kermanshah, Iran
[3] Univ Messina, Dept Econ, Via Verdi 75, Messina, Italy
来源:
DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS
|
2018年
/
230卷
关键词:
Boundary-value problems;
Real line;
Multiple solutions;
Variational methods;
Critical point theory;
INFINITE INTERVAL PROBLEMS;
MODELING PHENOMENA;
WEAK SOLUTIONS;
EXISTENCE;
D O I:
10.1007/978-3-319-75647-9_12
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper deals with the existence and energy estimates of positive solutions for a class of Kirchhoff-type boundary-value problems on the real line, while the nonlinear part of the problem admits some hypotheses on the behavior at origin or perturbation property. In particular, for a precise localization of the parameter, applying a consequence of the local minimum theorem for differentiable functionals due to Bonanno the existence of a positive solution is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. In what follows, employing two consequences of the local minimum theorem for differentiable functionals due to Bonanno by combining two algebraic conditions on the nonlinear term which guarantees the existence of two positive solutions as well as applying the mountain pass theorem given by Pucci and Serrin, we establish the existence of the third positive solution for our problem. Moreover, concrete examples of applications are provided.
机构:
Univ Reggio Calabria, Fac Architettura, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, ItalyUniv Reggio Calabria, Fac Architettura, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, Italy
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU Salita Melissari Feo di Vito, I-89100 Calabria, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU Salita Melissari Feo di Vito, I-89100 Calabria, Italy
Bisci, Giovanni Molica
;
Radulescu, Vicentiu D.
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
Univ Craiova, Dept Math, Craiova 200585, RomaniaUniv Mediterranea Reggio Calabria, Dipartimento PAU Salita Melissari Feo di Vito, I-89100 Calabria, Italy
机构:
Univ Reggio Calabria, Fac Architettura, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, ItalyUniv Reggio Calabria, Fac Architettura, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, Italy
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU Salita Melissari Feo di Vito, I-89100 Calabria, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU Salita Melissari Feo di Vito, I-89100 Calabria, Italy
Bisci, Giovanni Molica
;
Radulescu, Vicentiu D.
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
Univ Craiova, Dept Math, Craiova 200585, RomaniaUniv Mediterranea Reggio Calabria, Dipartimento PAU Salita Melissari Feo di Vito, I-89100 Calabria, Italy