Tracking, tuning, and terminating microbial physiology using synthetic riboregulators

被引:140
作者
Callura, Jarred M. [1 ,2 ,3 ,4 ]
Dwyer, Daniel J. [1 ,2 ,3 ,4 ]
Isaacs, Farren J. [5 ]
Cantor, Charles R. [1 ,3 ]
Collins, James J. [1 ,2 ,3 ,4 ,6 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Howard Hughes Med Inst, Boston, MA 02215 USA
[3] Boston Univ, Ctr Adv Biotechnol, Boston, MA 02215 USA
[4] Boston Univ, Ctr BioDynam, Boston, MA 02215 USA
[5] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02215 USA
[6] Harvard Univ, Wyss Inst Biologically Inspired Engn, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
gene expression; kill switch; RNA engineering; synthetic biology; systems biology; ESCHERICHIA-COLI; GENE-EXPRESSION; BACTERIAL DEATH; DNA GYRASE; F-PLASMID; WILD-TYPE; PROTEIN; MECHANISM; BIOLOGY; MODULATION;
D O I
10.1073/pnas.1009747107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of biomolecular devices that interface with biological systems to reveal new insights and produce novel functions is one of the defining goals of synthetic biology. Our lab previously described a synthetic, riboregulator systemthat affords for modular, tunable, and tight control of gene expression in vivo. Here we highlight several experimental advantages unique to this RNA-based system, including physiologically relevant protein production, component modularity, leakage minimization, rapid response time, tunable gene expression, and independent regulation of multiple genes. We demonstrate this utility in four sets of in vivo experiments with various microbial systems. Specifically, we show that the synthetic riboregulator is well suited for GFP fusion protein tracking in wildtype cells, tight regulation of toxic protein expression, and sensitive perturbation of stress response networks. We also show that the system can be used for logic-based computing of multiple, orthogonal inputs, resulting in the development of a programmable kill switch for bacteria. This work establishes a broad, easy-to-use synthetic biology platform for microbiology experiments and biotechnology applications.
引用
收藏
页码:15898 / 15903
页数:6
相关论文
共 51 条
  • [1] Synthesis of orthogonal transcription-translation networks
    An, Wenlin
    Chin, Jason W.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (21) : 8477 - 8482
  • [2] Bacterial iron homeostasis
    Andrews, SC
    Robinson, AK
    Rodríguez-Quiñones, F
    [J]. FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) : 215 - 237
  • [3] Synthetic biology: new engineering rules for an emerging discipline
    Andrianantoandro, Ernesto
    Basu, Subhayu
    Karig, David K.
    Weiss, Ron
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) : 2006.0028
  • [4] [Anonymous], 2005, DNA REPAIR MUTAGENES
  • [5] [Anonymous], 1989, Molecular Cloning: A Laboratory
  • [6] Design of the linkers which effectively separate domains of a bifunctional fusion protein
    Arai, R
    Ueda, H
    Kitayama, A
    Kamiya, N
    Nagamune, T
    [J]. PROTEIN ENGINEERING, 2001, 14 (08): : 529 - 532
  • [7] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [8] Bachmann BJ., 1996, ESCHERICHIA COLI SAL, P2460
  • [9] Programmable ligand-controlled riboregulators of eukaryotic gene expression
    Bayer, TS
    Smolke, CD
    [J]. NATURE BIOTECHNOLOGY, 2005, 23 (03) : 337 - 343
  • [10] Engineering a ligand-dependent RNA transcriptional activator
    Buskirk, AR
    Landrigan, A
    Liu, DR
    [J]. CHEMISTRY & BIOLOGY, 2004, 11 (08): : 1157 - 1163