Reproductive partitioning in sea level quinoa (Chenopodium quinoa Willd.) cultivars

被引:13
|
作者
Bertero, H. D. [1 ]
Ruiz, R. A.
机构
[1] Univ Buenos Aires, Catedra Prod Vegetal, Buenos Aires, DF, Argentina
关键词
Partitioning coefficients; Panicle stem relationship; Crop growth; Modeling; Dry matter partitioning; DRY-MATTER; STEM ELONGATION; KERNEL NUMBER; GRAIN NUMBER; PHOTOPERIOD; EFFICIENCY; GROWTH; YIELD; WHEAT; IMPROVEMENT;
D O I
10.1016/j.fcr.2010.04.009
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The proportion of growth allocated to reproductive organs can be an important determinant of yield variation between cultivars and environments. The main aim of this paper was to evaluate the adequacy of a model assuming constancy in partitioning coefficients (PC, the slope of organ weight to total weight relationship) within periods whose limits are associated with phenological phases to describe variation in reproductive growth (including seeds when present) in the Andean seed crop quinoa. A second objective was to analyze the dynamics of panicle and stem growth to advance our understanding of factors determining yield in this species. To do this, we used data from two experiments conducted in 2 years under field conditions in the Argentinean pampas, using four cultivars belonging to the Sea Level Type and adapted to temperate environments, under three densities. Reproductive partitioning followed a biphasic pattern; panicle biomass increased gradually until reaching a total biomass value, and then there was an increase in the slope of panicle vs. total aerial biomass relationship. Partitioning coefficients for the initial stage varied between some cultivars and densities in the first year, but not in the second. No significant differences were detected when PCs for the second stage were considered. The start of panicle growth was associated with thermal time to first anthesis (R-2 = 0.62) while thermal time to change in partitioning from low to high PC and that to end of flowering were strongly related (R-2 = 0.93). Combining data across cultivars, years and densities gave a PC of 0.15 for the initial stage and 0.90 for the second stage. Using these relationships and parameters dynamics of panicle biomass accumulation was predicted satisfactorily in an independent data set for a different environment, confirming the usefulness of a single model approach to describe partitioning across cvs. and environments in this crop. Besides, crop yield estimations improved when compared to those obtained by a seed number estimation model, predictions were only 7.25% lower than observed values compared to -24.5% using a seed number approach. There is a trade-off between final partitioning to reproductive structures (higher in short-cycle cvs.) and total crop biomass, one of the factors contributing to this trade-off being a negative association between the panicle-stem relationship at harvest and duration in thermal time units of stem growth; so, selection for high partitioning rate should be targeted at long duration cvs. within this germplasm. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [1] Determination of seed number in sea level quinoa (Chenopodium quinoa Willd.) cultivars
    Bertero, H. D.
    Ruiz, R. A.
    EUROPEAN JOURNAL OF AGRONOMY, 2008, 28 (03) : 186 - 194
  • [2] Aerodynamic properties of two quinoa (Chenopodium quinoa Willd.) cultivars
    Caetano, Jordana Moura
    Devilla, Ivano Alessandro
    Melo, Pamella de Carvalho
    Servulo, Ana Claudia Oliveira
    Ferreira, Rafael Batista
    REVISTA BRASILEIRA DE CIENCIAS AGRARIAS-AGRARIA, 2022, 17 (01):
  • [3] Ecdysteroids of Quinoa seeds (Chenopodium quinoa Willd.)
    Zhu, N
    Kikuzaki, H
    Vastano, BC
    Nakatani, N
    Karwe, MV
    Rosen, RT
    Ho, CT
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (05) : 2576 - 2578
  • [4] The worldwide potential for quinoa (Chenopodium quinoa Willd.)
    Jacobsen, SE
    FOOD REVIEWS INTERNATIONAL, 2003, 19 (1-2) : 167 - 177
  • [5] Glycaemic properties of quinoa (Chenopodium quinoa Willd.).
    Zevallos, V.
    Grimble, G.
    Herencia, L. I.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2006, 65 : 60A - 60A
  • [6] Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds
    Konishi, Y
    Hirano, S
    Tsuboi, H
    Wada, M
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2004, 68 (01) : 231 - 234
  • [7] Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Adolf, Verena Isabelle
    Jacobsen, Sven-Erik
    Shabala, Sergey
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 92 : 43 - 54
  • [8] Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments
    Snowball, Richard
    Dhammu, Harmohinder S.
    D'Antuono, Mario Francesco
    Troldahl, David
    Biggs, Ian
    Thompson, Callen
    Warmington, Mark
    Pearce, Amanda
    Sharma, Darshan L.
    AGRONOMY-BASEL, 2022, 12 (09):
  • [9] Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.)
    Navruz-Varli, Semra
    Sanlier, Nevin
    JOURNAL OF CEREAL SCIENCE, 2016, 69 : 371 - 376
  • [10] Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)
    Vilcacundo, Ruben
    Hernandez-Ledesma, Blanca
    CURRENT OPINION IN FOOD SCIENCE, 2017, 14 : 1 - 6