On the Question of the Backlund Transformations and Jordan Generalizations of the Second Painleve Equation

被引:1
作者
Yurov, Artyom, V [1 ]
Yurov, Valerian A. [1 ]
机构
[1] Immanuel Kant Baltic Fed Univ, Inst Phys Math & Informat Technol, Al Nevsky St 14, Kaliningrad 236041, Russia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
关键词
Painleve equations; Backlund transformations; Schlesinger transformations; !text type='JS']JS[!/text]-systems; JP-systems; ORDINARY DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATIONS; EVOLUTION-EQUATIONS; NLS EQUATION; CHAINS; CONNECTION; 2ND-ORDER; ORDER; MODEL; WAVES;
D O I
10.3390/sym13112095
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate the way to derive the second Painleve equation P-2 and its Backlund transformations from the deformations of the Nonlinear Schrodinger equation (NLS), all the while preserving the strict invariance with respect to the Schlesinger transformations. The proposed algorithm allows for a construction of Jordan algebra-based completely integrable multiple-field generalizations of P-2 while also producing the corresponding Backlund transformations. We suggest calling such models the JP-systems. For example, a Jordan algebra J(Mat(N,N)) with the Jordan product in the form of a semi-anticommutator is shown to generate an integrable matrix generalization of P-2, whereas the V-N algebra produces a different JP-system that serves as a generalization of the Sokolov's form of a vectorial NLS.
引用
收藏
页数:15
相关论文
共 56 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[3]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[4]  
Abramowitz M., 1972, Applied Mathematics Series, V55
[5]  
Adler VE, 2021, THEOR MATH PHYS+, V207, P560, DOI [10.1134/S0040577921050020, 10.4213/tmf10027]
[6]   Symmetry approach to the integrability problem [J].
Adler, VÉ ;
Shabat, AB ;
Yamilov, RI .
THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 125 (03) :1603-1661
[7]  
AIRAULT H, 1979, STUD APPL MATH, V61, P31
[8]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[9]   On the Painleve test for non-Abelian equations [J].
Balandin, SP ;
Sokolov, VV .
PHYSICS LETTERS A, 1998, 246 (3-4) :267-272
[10]   Bilinear Equations on Painlev, τ Functions from CFT [J].
Bershtein, M. A. ;
Shchechkin, A. I. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (03) :1021-1061