On gradient flow and entropy solutions for nonlocal transport equations with nonlinear mobility

被引:9
作者
Fagioli, Simone [1 ]
Tse, Oliver [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio 1, I-67100 Coppito, Italy
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Deterministic particle approximation; Entropy solutions; Gradient flow; Nonlocal transport equations; DETERMINISTIC PARTICLE APPROXIMATION; KELLER-SEGEL MODEL; MOVING MESH METHOD; CONSERVATION; EVOLUTION; CONVERGENCE; CHEMOTAXIS; PREVENTION; DYNAMICS; METRICS;
D O I
10.1016/j.na.2022.112904
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the well-posedness of entropy solutions for a wide class of nonlocaltransport equations with nonlinear mobility in one spatial dimension. The solutionis obtained as the limit of approximations constructed via a deterministic systemof interacting particles that exhibits a gradient flow structure. At the same time,we expose a rigorous gradient flow structure for this class of equations in terms ofan Energy-Dissipation balance, which we obtain via the asymptotic convergenceof functionals.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article underthe CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:35
相关论文
共 52 条
[21]   Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws [J].
Carrillo, Jose A. ;
Di Francesco, Marco ;
Lattanzio, Corrado .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (02) :425-458
[22]  
Carrillo J, 2021, Arxiv, DOI arXiv:2007.01185
[23]   A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes [J].
Carrillo, Jose A. ;
During, Bertram ;
Matthes, Daniel ;
McCormick, David S. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) :1463-1499
[24]   NUMERICAL STUDY OF A PARTICLE METHOD FOR GRADIENT FLOWS [J].
Carrillo, Jose Antonio ;
Huang, Yanghong ;
Patacchini, Francesco Saverio ;
Wolansky, Gershon .
KINETIC AND RELATED MODELS, 2017, 10 (03) :613-641
[25]   Deterministic particle approximation of scalar conservation laws [J].
Di Francesco M. ;
Fagioli S. ;
Rosini M.D. .
Bollettino dell'Unione Matematica Italiana, 2017, 10 (3) :487-501
[26]  
Di Francesco Marco, 2016, ESAIM: Proceedings and Surveys, V54, P18, DOI 10.1051/proc/201654018
[27]   Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding [J].
Di Francesco, Marco ;
Rosado, Jesus .
NONLINEARITY, 2008, 21 (11) :2715-2730
[28]   CONVERGENCE OF THE FOLLOW-THE-LEADER SCHEME FOR SCALAR CONSERVATION LAWS WITH SPACE DEPENDENT FLUX [J].
Di Francesco, Marco ;
Stivaletta, Graziano .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (01) :233-266
[29]   Deterministic particle approximation for nonlocal transport equations with nonlinear mobility [J].
Di Francesco, Marco ;
Fagioli, Simone ;
Radici, Emanuela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (05) :2830-2868
[30]   A new class of transport distances between measures [J].
Dolbeault, Jean ;
Nazaret, Bruno ;
Savare, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (02) :193-231