On gradient flow and entropy solutions for nonlocal transport equations with nonlinear mobility

被引:9
作者
Fagioli, Simone [1 ]
Tse, Oliver [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio 1, I-67100 Coppito, Italy
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Deterministic particle approximation; Entropy solutions; Gradient flow; Nonlocal transport equations; DETERMINISTIC PARTICLE APPROXIMATION; KELLER-SEGEL MODEL; MOVING MESH METHOD; CONSERVATION; EVOLUTION; CONVERGENCE; CHEMOTAXIS; PREVENTION; DYNAMICS; METRICS;
D O I
10.1016/j.na.2022.112904
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the well-posedness of entropy solutions for a wide class of nonlocaltransport equations with nonlinear mobility in one spatial dimension. The solutionis obtained as the limit of approximations constructed via a deterministic systemof interacting particles that exhibits a gradient flow structure. At the same time,we expose a rigorous gradient flow structure for this class of equations in terms ofan Energy-Dissipation balance, which we obtain via the asymptotic convergenceof functionals.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article underthe CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:35
相关论文
共 52 条
[1]  
Ambrosio L., 2008, LECT MATH ETH ZURICH, px+334
[2]   A gradient flow approach to an evolution problem arising in superconductivity [J].
Ambrosio, Luigi ;
Serfaty, Sylvia .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (11) :1495-1539
[3]   Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices [J].
Ambrosio, Luigi ;
Mainini, Edoardo ;
Serfaty, Sylvia .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02) :217-246
[4]  
[Anonymous], 1967, Mat. Sb. (N.S.)
[5]  
[Anonymous], 2006, Port. Math. (N.S.)
[6]   A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries [J].
Baines, MJ ;
Hubbard, ME ;
Jimack, PK .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) :450-469
[7]   AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS [J].
Bertozzi, Andrea L. ;
Laurent, Thomas ;
Leger, Flavien .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
[8]   Contractive metrics for scalar conservation laws [J].
Bolley, F ;
Brenier, Y ;
Loeper, G .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :91-107
[9]   EQUIVALENCE OF GRADIENT FLOWS AND ENTROPY SOLUTIONS FOR SINGULAR NONLOCAL INTERACTION EQUATIONS IN 1D [J].
Bonaschi, Giovanni A. ;
Carrillo, Jose A. ;
Di Francesco, Marco ;
Peletier, Mark A. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (02) :414-441
[10]   L 2 Formulation of Multidimensional Scalar Conservation Laws [J].
Brenier, Yann .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 193 (01) :1-19