Global optimal model selection for high-dimensional survival analysis

被引:0
作者
Chu, Guotao [1 ]
Goh, Gyuhyeong [1 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
关键词
Boltzmann distribution; cox proportional hazard model; generalized information criterion; high-dimensional variable selection; BAYESIAN INFORMATION CRITERION; VARIABLE SELECTION; ADAPTIVE LASSO; REGULARIZATION;
D O I
10.1080/00949655.2021.1954183
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the popularity of high-dimensional data, model selection is of great importance in recent survival analysis. In a model selection context, an important research question is how to define the best model. To answer this, various model selection criteria have been proposed for defining the best model. The existing methods commonly use the L-0-norm penalization in order to measure the model complexity based on the number of parameters. However, due to the nonconvexity of the L-0-penalty, finding the best model via global optimization has been a challenging research subject in statistics and machine learning. In this paper, we propose a global optimization algorithm using a modification of the simulated annealing, which is a probabilistic search algorithm for the global optimum in statistical mechanics. The performance of the proposed method is examined via simulation study and real data analysis.
引用
收藏
页码:3850 / 3863
页数:14
相关论文
共 29 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[3]  
ATKINSON AC, 1980, BIOMETRIKA, V67, P413, DOI 10.1093/biomet/67.2.413
[4]   EXPLAINING THE GIBBS SAMPLER [J].
CASELLA, G ;
GEORGE, EI .
AMERICAN STATISTICIAN, 1992, 46 (03) :167-174
[5]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[6]   EXTENDED BIC FOR SMALL-n-LARGE-P SPARSE GLM [J].
Chen, Jiahua ;
Chen, Zehua .
STATISTICA SINICA, 2012, 22 (02) :555-574
[7]  
COX DR, 1972, J R STAT SOC B, V34, P187
[8]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[9]  
Foygel R., 2010, Advances in Neural Information Processing Systems, V23, P2020, DOI DOI 10.48550/ARXIV.1011.6640
[10]  
Gibbs JW., 1960, Elementary principles in statistical mechanics