Fault detection of rotating machinery using model-based techniques

被引:0
|
作者
Abdel-Magied, MF [1 ]
Loparo, KA [1 ]
Horattas, GA [1 ]
Adams, ML [1 ]
机构
[1] Case Western Reserve Univ, Dept Syst Engn, Cleveland, OH 44106 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work formulates the problem of incipient fault detection and diagnostics for rotating machinery in a statistical model-based framework. This includes problem description, modeling of rotating machinery and fault mechanisms, formulation of the detection and diagnostics problem, and an implementation of the proposed scheme in a simulation environment to test the feasibility of this approach. More specifically, a multiple model nonlinear filtering algorithm is proposed for fault detection and diagnostics in a statistical framework. A simulation study, which includes normal and different fault modes, illustrates the potential of the proposed approach, especially in the presence of measurement noise and process uncertainty.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [21] Automatic and Efficient Fault Detection in Rotating Machinery using Sound Signals
    Altaf, Muhammad
    Uzair, Muhammad
    Naeem, Muhammad
    Ahmad, Ayaz
    Badshah, Saeed
    Shah, Jawad Ali
    Anjum, Almas
    ACOUSTICS AUSTRALIA, 2019, 47 (02) : 125 - 139
  • [22] Fault detection in rotating machinery by using the modal state observer approach
    Leao, L. S.
    Cavalini Jr, A. A.
    Morais, S.
    Melo, G. P.
    Steffen Jr, V
    JOURNAL OF SOUND AND VIBRATION, 2019, 458 : 123 - 142
  • [23] Fault detection and diagnosis of rotating machinery using modified particle filter
    Li, Ke
    Liu, Yiya
    Wu, Jingjing
    Su, Lei
    Chen, Peng
    JOURNAL OF VIBROENGINEERING, 2017, 19 (05) : 3395 - 3412
  • [24] Automatic and Efficient Fault Detection in Rotating Machinery using Sound Signals
    Muhammad Altaf
    Muhammad Uzair
    Muhammad Naeem
    Ayaz Ahmad
    Saeed Badshah
    Jawad Ali Shah
    Almas Anjum
    Acoustics Australia, 2019, 47 : 125 - 139
  • [25] Combination of modelling techniques for fault diagnosis of rotating machinery using vibration analysis
    Adgar, A
    Emmanouilidis, C
    McGarry, KJ
    COMADEM '99, PROCEEDINGS, 1999, : 259 - 269
  • [26] Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection
    Li, Gang
    McDonald, Geoff L.
    Zhao, Qing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 83 : 356 - 370
  • [27] Design of residuals in a model-based fault detection and isolation system using statistical process control techniques
    Garcia-Alvarez, D.
    Fuente, M. J.
    Sainz, G.
    2011 IEEE 16TH CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2011,
  • [28] Rotating machinery failure detection using different vibration analysis techniques
    del Castillo, L
    Artés, M
    García-Prada, JC
    PROCEEDINGS OF ISMA 2002: INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS 1-5, 2002, : 1539 - 1544
  • [29] AR model for diagnosis of rotating machinery fault
    Huang, Shi-Hong
    Chen, Yong
    Gao, Wei
    Qilunji Jishu/Turbine Technology, 2001, 43 (06):
  • [30] Intelligent Fault Diagnostic Model for Rotating Machinery
    Muhammad, Masdi B.
    Sarwar, Umair
    Tahan, Mohammadreza
    Karim, Z. A. Abdul
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, : 1858 - 1862