Spin foams and noncommutative geometry

被引:15
作者
Denicola, Domenic [1 ]
Marcolli, Matilde [2 ]
al-Yasry, Ahmad Zainy [3 ]
机构
[1] CALTECH, Pasadena, CA 91126 USA
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[3] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy
关键词
SPECTRAL TRIPLES; QUANTUM-GRAVITY; BRANCHED COVERS; CORRESPONDENCES; INVARIANTS; GRAPHS;
D O I
10.1088/0264-9381/27/20/205025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend the formalism of embedded spin networks and spin foams to include topological data that encode the underlying three-manifold or four-manifold as a branched cover. These data are expressed as monodromies, in a way similar to the encoding of the gravitational field via holonomies. We then describe convolution algebras of spin networks and spin foams, based on the different ways in which the same topology can be realized as a branched covering via covering moves, and on possible composition operations on spin foams. We illustrate the case of the groupoid algebra of the equivalence relation determined by covering moves and a 2-semigroupoid algebra arising from a 2-category of spin foams with composition operations corresponding to a fibered product of the branched coverings and the gluing of cobordisms. The spin foam amplitudes then give rise to dynamical flows on these algebras, and the existence of low temperature equilibrium states of the Gibbs form is related to questions on the existence of topological invariants of embedded graphs and embedded two-complexes with given properties. We end by sketching a possible approach to combining the spin network and spin foam formalism with matter within the framework of spectral triples in noncommutative geometry.
引用
收藏
页数:53
相关论文
共 48 条
  • [1] Spectral triples of holonomy loops
    Aastrup, J
    Grimstrup, JM
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (03) : 657 - 681
  • [2] Aastrup J, 2009, ARXIV09114141GRQC
  • [3] Aastrup J, 2009, ARXIV09112404HEPTH
  • [4] Aastrup J, 2009, ARXIV09075510HEPTH
  • [5] Aastrup J, 2010, ARXIV10033802HEPTH
  • [6] Intersecting connes noncommutative geometry with quantum gravity
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (8-9): : 1589 - 1603
  • [7] Holonomy loops, spectral triples and quantum gravity
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    Nest, Ryszard
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (16)
  • [8] A New Spectral Triple over a Space of Connections
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    Nest, Ryszard
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (01) : 389 - 398
  • [9] Aastrup J, 2009, J NONCOMMUT GEOM, V3, P47
  • [10] On spectral triples in quantum gravity: I
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    Nest, Ryszard
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (06)