Stability of trajectories for N-particle dynamics with a singular potential

被引:2
|
作者
Barre, J. [1 ]
Hauray, M. [2 ]
Jabin, P. E. [1 ,3 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR CNRS 6621, F-06108 Nice, France
[2] Univ Provence, CMI, F-13453 Marseille, France
[3] INRIA Sophia Antipolis Mediterranee, TOSCA Project Team, F-06902 Sophia Antipolis, France
关键词
rigorous results in statistical mechanics; kinetic theory of gases and liquids; 2-D EULER EQUATIONS; ORDINARY DIFFERENTIAL-EQUATIONS; POINT-VORTEX METHOD; DIPERNA-LIONS FLOW; TRANSPORT-EQUATION; APPROXIMATION; CONVERGENCE; REGULARITY;
D O I
10.1088/1742-5468/2010/07/P07005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the stability in finite times of the trajectories of interacting particles. Our aim is to show that on average and uniformly in the number of particles, two trajectories whose initial positions in phase space are close remain close enough at later times. For potentials less singular than the classical electrostatic kernel, we are able to prove such a result for initial positions/velocities distributed according to the Gibbs equilibrium of the system.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] ON THE STABILITY OF N-PARTICLE SYSTEMS
    VUGALTER, SA
    ZHISLIN, GM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 76 (01) : 757 - 765
  • [2] Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials
    Florian Conrad
    Martin Grothaus
    Journal of Evolution Equations, 2010, 10 : 623 - 662
  • [3] Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials
    Conrad, Florian
    Grothaus, Martin
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) : 623 - 662
  • [4] Stability of n-particle pseudorelativistic systems
    Zhislin, G. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (03) : 1322 - 1330
  • [5] Stability of n-particle pseudorelativistic systems
    G. M. Zhislin
    Theoretical and Mathematical Physics, 2007, 152 : 1322 - 1330
  • [6] Generally covariant N-particle dynamics
    Miller, Tomasz
    Eckstein, Michal
    Horodecki, Pawel
    Horodecki, Ryszard
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [8] N-particle nonclassicality without N-particle correlations
    Wiesniak, Marcin
    Nawareg, Mohamed
    Zukowski, Marek
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [9] N-particle dynamics of the Euler equations for planar diffeomorphisms
    Mclachlan, Robert I.
    Marsland, Stephen
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2007, 22 (03): : 269 - 290
  • [10] CONDITIONAL DYNAMICS: REFINEMENT AND PHASING BY N-PARTICLE OPTIMIZATION
    Gros, P.
    Scheres, S. H. W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C29 - C29