ON A NEW SMOOTHING TECHNIQUE FOR NON-SMOOTH, NON-CONVEX OPTIMIZATION

被引:7
|
作者
Yilmaz, Nurullah [1 ]
Sahiner, Ahmet [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, Isparta, Turkey
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2020年 / 10卷 / 03期
关键词
Smoothing techniques; non-smooth analysis; non-Lipschitz problems; global optimization; FILLED FUNCTION-METHOD; GLOBAL DESCENT METHOD; MINIMIZATION; ALGORITHM; SPLINE;
D O I
10.3934/naco.2020004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many global optimization techniques, the local search methods are used for different issues such as to obtain a new initial point and to find the local solution rapidly. Most of these local search methods base on the smoothness of the problem. In this study, we propose a new smoothing approach in order to smooth out non-smooth and non-Lipschitz functions playing a very important role in global optimization problems. We illustrate our smoothing approach on well-known test problems in the literature. The numerical results show the efficiency of our method.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [41] GLOBAL OPTIMIZATION FOR NON-CONVEX PROGRAMS VIA CONVEX PROXIMAL POINT METHOD
    Zhao, Yuanyi
    Xing, Wenxun
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (06) : 4591 - 4614
  • [42] Global optimization of non-convex piecewise linear regression splines
    Martinez, Nadia
    Anahideh, Hadis
    Rosenberger, Jay M.
    Martinez, Diana
    Chen, Victoria C. P.
    Wang, Bo Ping
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (03) : 563 - 586
  • [44] Online Non-Convex Optimization with Imperfect Feedback
    Heliou, Amelie
    Martin, Matthieu
    Mertikopoulos, Panayotis
    Rahier, Thibaud
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [45] A Global Optimization Approach to Non-Convex Problems
    Lu, Z. F.
    Lan, Y.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2015), 2015, 123 : 449 - 452
  • [46] DIFFUSION STOCHASTIC OPTIMIZATION WITH NON-SMOOTH REGULARIZERS
    Vlaski, Stefan
    Vandenberghe, Lieven
    Sayed, Ali H.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4149 - 4153
  • [47] A generic coordinate descent solver for non-smooth convex optimisation
    Fercoq, Olivier
    OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (06) : 1202 - 1222
  • [48] HONOR: Hybrid Optimization for NOn-convex Regularized problems
    Gong, Pinghua
    Ye, Jieping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [49] An introduction to non-smooth convex analysis via multiplicative derivative
    Tor, Ali Hakan
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 351 - 359
  • [50] Parallel Global Optimization for Non-convex Mixed-Integer Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 98 - 109