A degree condition for fractional [a, b]-covered graphs

被引:19
|
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Network; Combinatorial problems; Degree condition; Fractional; a; b]-covered graph; ORTHOGONAL FACTORIZATIONS; EXISTENCE; EVEN; (A;
D O I
10.1016/j.ipl.2018.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph of order n with delta(G) >= a + 1, and 3 <= a <= b be integers. In this paper, we first show that if G satisfies max{d(G)(X),d(G)(Y)} >= a(n+1)/a+b for each pair of nonadjacent vertices x, y of G, then G is a fractional [a,b]-covered graph. It is a generalization of the known result with a = b = k which is given by Zhou. Furthermore, we show that this result is best possible in some sense. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [41] A note on fractional ID-[a, b]-factor-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 511 - 516
  • [42] TIGHT TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n)-CRITICAL GRAPHS
    Gao, Wei
    Liang, Li
    Xu, Tianwei
    Zhou, Juxiang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 55 - 65
  • [43] On Fractional (g, f, n′, m)-Critical Covered Graphs
    Gao, Wei
    Wang, Wei-Fan
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (02) : 446 - 460
  • [44] A new neighborhood condition for graphs to be fractional (k, m)-deleted graphs
    Zhou, Sizhong
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 509 - 513
  • [45] An isolated toughness condition for graphs to be fractional (k, m)-deleted graphs
    Gao, Wei
    Liang, Li
    Chen, Yuhua
    UTILITAS MATHEMATICA, 2017, 105 : 303 - 316
  • [46] On fractional (g, f, m)-covered graphs
    Liu, Shuli
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 246 - 248
  • [47] Isolated toughness and fractional (a,b,n)-critical graphs
    Gao, Wei
    Wang, Weifan
    Chen, Yaojun
    CONNECTION SCIENCE, 2023, 35 (01)
  • [48] Degree conditions for fractional (k, m)-deleted graphs
    Gao, Wei
    Wang, Weifan
    ARS COMBINATORIA, 2014, 113A : 273 - 285
  • [49] A Degree Condition for Graphs to Have (g, f)-Factors
    Zhou, Sizhong
    Pu, Bingyuan
    ARS COMBINATORIA, 2012, 107 : 307 - 315
  • [50] A Note of Generalization of Fractional ID-factor-critical Graphs
    Zhou, Sizhong
    FUNDAMENTA INFORMATICAE, 2022, 187 (01) : 61 - 69