A degree condition for fractional [a, b]-covered graphs

被引:19
|
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Network; Combinatorial problems; Degree condition; Fractional; a; b]-covered graph; ORTHOGONAL FACTORIZATIONS; EXISTENCE; EVEN; (A;
D O I
10.1016/j.ipl.2018.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph of order n with delta(G) >= a + 1, and 3 <= a <= b be integers. In this paper, we first show that if G satisfies max{d(G)(X),d(G)(Y)} >= a(n+1)/a+b for each pair of nonadjacent vertices x, y of G, then G is a fractional [a,b]-covered graph. It is a generalization of the known result with a = b = k which is given by Zhou. Furthermore, we show that this result is best possible in some sense. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [1] Degree conditions for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    Xu, Yang
    Sun, Zhiren
    INFORMATION PROCESSING LETTERS, 2019, 152
  • [2] A sufficient condition for fractional ID-[a, b]-factor-critical covered graphs
    Jiang, Jiashang
    UTILITAS MATHEMATICA, 2020, 114 : 173 - 179
  • [3] A degree condition for fractional (g, f, n)-critical covered graphs
    Lv, Xiangyang
    AIMS MATHEMATICS, 2020, 5 (02): : 872 - 878
  • [4] Degree Conditions for Graphs to Be Fractional k-Covered Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2015, 118 : 135 - 142
  • [5] Isolated toughness for fractional (2, b, k)-critical covered graphs
    Zhou, Sizhong
    Pan, Quanru
    Xu, Lan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2023, 24 (01): : 11 - 18
  • [6] Notes on fractional (a, b, k)-critical covered graphs
    Sun, Zhiren
    Zhou, Sizhong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (01): : 105 - 115
  • [7] A Result on Fractional (a, b, k)-critical Covered Graphs
    Zhou, Si-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (04): : 657 - 664
  • [8] Neighborhood union conditions for fractional [a, b]-covered graphs
    Yuan, Yuan
    Hao, Rong-Xia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 157 - 167
  • [9] Binding numbers for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (02): : 115 - 121
  • [10] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Wang, Su-Fang
    Zhang, Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 197 - 205