In-vivo high resolution corneal imaging and analysis on animal models for clinical applications

被引:0
作者
Hong, Jesmond [1 ]
Shinoj, V. K. [1 ,2 ,3 ]
Murukeshan, V. M. [1 ]
Baskaran, M. [2 ,3 ,4 ]
Aung, Tin [2 ,3 ,4 ]
机构
[1] Sch Mech & Aerosp Engn, Ctr Opt & Laser Engn, Singapore 630798, Singapore
[2] SERI, Singapore 168751, Singapore
[3] SNEC, Singapore 168751, Singapore
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore 117595, Singapore
来源
INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2015) | 2015年 / 9524卷
关键词
in vivo corneal imaging; Probe imaging; Raster scanning; MICROSCOPE; RABBIT; EYE; OCT;
D O I
10.1117/12.2189469
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simple and low cost optical probe system for the high resolution imaging of the cornea is proposed, based on a Gaussian beam epi-illumination configuration. Corneal topography is obtained by moving the scanning spot across the eye in a raster fashion whereas pachymetry data is achieved by reconstructing the images obtained at different depths. The proposed prototype has been successfully tested on porcine eye samples ex vivo and subsequently on laboratory animals, such as the New Zealand White Rabbit, in vivo. This proposed system and methodology pave the way for realizing a simple and inexpensive optical configuration for pachymetry and keratometry readings, with achievable resolution up to the cellular level. This novel and non-contact high resolution imaging modality demonstrates high intra-observer reproducibility and repeatability. Together with its sophisticated data analysis strategies and safety profile, it is believed to complement existing imaging modalities in the assessment and evaluation of corneal diseases, which enable a decrease in morbidity and improvement in the effectiveness of subsequent treatment.
引用
收藏
页数:8
相关论文
共 35 条
  • [1] Analysis of the optical properties of crystalline lenses by point-diffraction interferometry
    Acosta, Eva
    Vazquez, Daniel
    Castillo, Luis Rodriguez
    [J]. OPHTHALMIC AND PHYSIOLOGICAL OPTICS, 2009, 29 (03) : 235 - 246
  • [2] [Anonymous], 1997, HEALTH PHYS, V73, P539
  • [3] Optical coherence tomography measurements of the fresh porcine eye and response of the outer coats of the eye to volume increase
    Asejczyk-Widlicka, Magdelena
    Schachar, Ronald A.
    Pierscionek, Barbara K.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (02)
  • [4] Atchison DA, 2000, Optics of the human eye, V35, DOI DOI 10.1016/B978-0-7506-3775-6.50022-5
  • [5] Assessment of Circumferential Angle-Closure by the IriseTrabecular Contact Index with Swept-Source Optical Coherence Tomography
    Baskaran, Mani
    Ho, Sue-Wei
    Tun, Tin A.
    How, Alicia C.
    Perera, Shamira A.
    Friedman, David S.
    Aung, Tin
    [J]. OPHTHALMOLOGY, 2013, 120 (11) : 2226 - 2231
  • [6] BOYDE A, 1994, SCANNING, V16, P33
  • [7] Bozkir G, 1997, ACTA MED OKAYAMA, V51, P9
  • [8] Comparison of StratusOCT and Cirrus HD-OCT Imaging in Macular Diseases
    Brennen, Peter M.
    Kagemann, Larry
    Friberg, Thomas R.
    [J]. OPHTHALMIC SURGERY LASERS & IMAGING, 2009, 40 (01) : 25 - 31
  • [9] Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging
    Carlson Maitland, Kristen
    Shin, Hyun Joon
    Ra, Hyejun
    Lee, Daesung
    Solgaard, Olav
    Richards-Kortum, Rebecca
    [J]. OPTICS EXPRESS, 2006, 14 (19): : 8604 - 8612
  • [10] Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices
    Delori, Francois C.
    Webb, Robert H.
    Sliney, David H.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (05) : 1250 - 1265