Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

被引:1
|
作者
Fortmann-Grote, C. [1 ]
Bielecki, J. [1 ]
Jurek, Z. [2 ,3 ]
Santra, R. [2 ,3 ,4 ]
Ziaja-Motyka, B. [2 ,3 ,5 ]
Mancuso, A. P. [1 ]
机构
[1] European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
[2] DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany
[3] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Univ Hamburg, Dept Phys, Jungiusstr 9, D-20355 Hamburg, Germany
[5] Polish Acad Sci, Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland
来源
ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY OPTICS IV | 2017年 / 10388卷
基金
欧盟地平线“2020”;
关键词
Start-to-end simulations; single-particle imaging; hydration layer; MOLECULAR-DYNAMICS; BIOLOGICAL MOLECULES; WATER; SCATTERING; LAYER; SPECTROSCOPY; DIFFRACTION; LIMITATIONS; PULSES; SHELL;
D O I
10.1117/12.2275274
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitely. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 angstrom thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Classification of diffraction patterns in single particle imaging experiments performed at x-ray free-electron lasers using a convolutional neural network
    Ignatenko, Alexandr
    Assalauova, Dameli
    Bobkov, Sergey A.
    Gelisio, Luca
    Teslyuk, Anton B.
    Ilyin, Viacheslav A.
    Vartanyants, Ivan A.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):
  • [22] X-ray free-electron lasers: from dreams to reality
    Pellegrini, C.
    PHYSICA SCRIPTA, 2016, T169
  • [23] Progress towards imaging biological filaments using X-ray free-electron lasers
    Arnal, Romain D.
    Wojtas, David H.
    Millane, Rick P.
    2020 35TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2020,
  • [24] RNA structures and dynamics with A resolution revealed by x-ray free-electron lasers
    Zielinski, Kara A.
    Sui, Shuo
    Pabit, Suzette A.
    Rivera, Daniel A.
    Wang, Tong
    Hu, Qingyue
    Kashipathy, Maithri M.
    Lisova, Stella
    Schaffer, Chris B.
    Mariani, Valerio
    Hunter, Mark S.
    Kupitz, Christopher
    Moss III, Frank R.
    Poitevin, Frederic P.
    Grant, Thomas D.
    Pollack, Lois
    SCIENCE ADVANCES, 2023, 9 (39):
  • [25] Classification of diffraction patterns using a convolutional neural network in single-particle-imaging experiments performed at X-ray free-electron lasers
    Assalauova, Dameli
    Ignatenko, Alexandr
    Isensee, Fabian
    Trofimova, Darya
    Vartanyants, Ivan A.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2022, 55 : 444 - 454
  • [26] Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers
    Sun, Zhibin
    Fan, Jiadong
    Li, Haoyuan
    Liu, Huajie
    Nam, Daewoong
    Kim, Chan
    Kim, Yoonhee
    Han, Yubo
    Zhang, Jianhua
    Yao, Shengkun
    Park, Jaehyun
    Kim, Sunam
    Tono, Kensuke
    Yabashi, Makina
    Ishikawa, Tetsuya
    Song, Changyong
    Fan, Chunhai
    Jiang, Huaidong
    ACS NANO, 2018, 12 (08) : 7509 - 7518
  • [27] Structural Heterogeneity in Single Particle Imaging Using X-ray Lasers
    Mandl, Thomas
    Ostlin, Christofer
    Dawod, Ibrahim E.
    Brodmerkel, Maxim N.
    Marklund, Erik G.
    Martin, Andrew, V
    Timneanu, Nicusor
    Caleman, Carl
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (15): : 6077 - 6083
  • [28] A predicted model-aided one-step classification-multireconstruction algorithm for X-ray free-electron laser single-particle imaging
    Jiao, Zhichao
    Geng, Zhi
    Ding, Wei
    IUCRJ, 2024, 11 : 891 - 900
  • [29] Femtosecond X-ray free-electron lasers: A new tool for studying nanocrystals and single macromolecules
    Yu. F. Krupyanskii
    N. K. Balabaev
    T. E. Petrova
    D. O. Sinitsyn
    E. V. Gryzlova
    K. B. Tereshkina
    E. G. Abdulnasyrov
    A. S. Stepanov
    V. Yu. Lunin
    A. N. Grum-Grzhimailo
    Russian Journal of Physical Chemistry B, 2014, 8 : 445 - 456
  • [30] Fresh-slice multicolour X-ray free-electron lasers
    Lutman, Alberto A.
    Maxwell, Timothy J.
    MacArthur, James P.
    Guetg, Marc W.
    Berrah, Nora
    Coffee, Ryan N.
    Ding, Yuantao
    Huang, Zhirong
    Marinelli, Agostino
    Moeller, Stefan
    Zemella, Johann C. U.
    NATURE PHOTONICS, 2016, 10 (11) : 745 - 750