EXISTENCE AND UNIQUENESS OF GLOBAL SOLUTIONS FOR THE MODIFIED ANISOTROPIC 3D NAVIER-STOKES EQUATIONS

被引:17
作者
Bessaih, Hakima [1 ]
Trabelsi, Saber [2 ]
Zorgati, Hamdi [3 ]
机构
[1] Univ Wyoming, Dept Math, Dept 3036,1000 East Univ Ave, Laramie, WY 82071 USA
[2] King Abdullah Univ Sci & Technol, Div Math & Comp Sci & Engn, Thuwal 239556900, Saudi Arabia
[3] Univ Tunis El Manar, Dept Math, Campus Univ, Tunis 2092, Tunisia
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 06期
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; Brinkman-Forchheimer-extended Darcy model; anisotropic viscosity; FLUIDS;
D O I
10.1051/m2an/2016008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a modified three-dimensional incompressible anisotropic Navier-Stokes equations. The modification consists in the addition of a power term to the nonlinear convective one. This modification appears naturally in porous media when a fluid obeys the Darcy-Forchheimer law instead of the classical Darcy law. We prove global in time existence and uniqueness of solutions without assuming the smallness condition on the initial data. This improves the result obtained for the classical 3D incompressible anisotropic Navier-Stokes equations.
引用
收藏
页码:1817 / 1823
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 2006, OXFORD LECT SER MATH
[2]  
[Anonymous], 1969, Mathematics and Its Applications
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[4]  
Bennacer R., 2002, Rev. Energ. Ren, V5, P1
[5]   Weak and strong solutions for the incompressible Navier-Stokes equations with damping [J].
Cai, Xiaojing ;
Jiu, Quansen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :799-809
[6]   Fluids with anisotropic viscosity [J].
Chemin, JY ;
Desjardins, B ;
Gallagher, I ;
Grenier, E .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02) :315-335
[7]  
Grenier E, 1997, COMMUN PART DIFF EQ, V22, P953
[8]   A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity [J].
Iftimie, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) :1483-1493
[9]   SMOOTH ATTRACTORS FOR THE BRINKMAN-FORCHHEIMER EQUATIONS WITH FAST GROWING NONLINEARITIES [J].
Kalantarov, Varga ;
Zelik, Sergey .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) :2037-2054
[10]   Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model [J].
Markowich, Peter A. ;
Titi, Edriss S. ;
Trabelsi, Saber .
NONLINEARITY, 2016, 29 (04) :1292-1328