First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi2MnO3 • (1-x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion Batteries

被引:40
|
作者
Shin, D. [1 ]
Wolverton, C. [1 ]
Croy, J. R. [2 ]
Balasubramanian, M. [3 ]
Kang, S. -H. [2 ]
Rivera, C. M. Lopez [2 ]
Thackeray, Michael M. [2 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Argonne Natl Lab, Electromech Energy Storage Dept, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Xray Sci Div, Adv Photon Source Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
TOTAL-ENERGY CALCULATIONS; CATHODE MATERIALS; HIGH-CAPACITY; AB-INITIO; LITHIUM; INTERCALATION; FE; CONDUCTIVITY; PREDICTION; VOLTAGES;
D O I
10.1149/2.098202jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
It has been previously hypothesized that the enhanced rate capability of Li-Ni-PO4-treated xLi(2)MnO(3) center dot (1-x)LiMO2 positive electrodes (M = Mn, Ni, Co) in Li-ion batteries might be associated with a defect Ni-doped Li3PO4 surface structure [i.e., Li3-2yNiyPO4 (0 < y < 1)], thereby promoting fast Li+-ion conduction at the xLi(2)MnO(3) center dot (1-x)LiMO2 particle surface. In this paper, the solubility of divalent metals (Fe, Mn, Ni, Mg) in gamma-Li3PO4 is predicted with the first-principles GGA+U method in an effort to understand the enhanced rate capability. The predicted solubility (x) is extremely small; this finding is consistent with experimental evidence: 1) X-ray diffraction data obtained from Li-Ni-PO4-treated xLi(2)MnO(3) center dot (1-x)LiMO2 electrodes that show that, after annealing at 550 degrees C, a Li3PO4-like structure forms as a second phase at the electrode particle surface, and 2) X-ray absorption spectroscopy, which indicate that the nickel ions are accommodated in the transition metal layers of the Li2MnO3 component during the annealing process. However, electrochemical studies of Li3-2yNiyPO4-treated xLi(2)MnO(3) center dot (1-x) LiMO2 electrodes indicate that their rate capability increases as a function of y over the range y = 0 (Li3PO4) to y = 1 (LiNiPO4), strongly suggesting that, at some level, the nickel ions play a role in reducing electrochemical impedance and increasing electrode stability at the electrode particle surface. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.098202jes] All rights reserved.
引用
收藏
页码:A121 / A127
页数:7
相关论文
共 44 条
  • [31] Influence of the composition on the electrochemical properties of cathode materials xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2 for lithium-ion batteries
    Pechen, L. S.
    Makhonina, E., V
    Rumyantsev, A. M.
    Koshtyal, Yu M.
    Volkov, V. V.
    Goloveshkin, A. S.
    Pervov, V. S.
    Eremenko, I. L.
    RUSSIAN CHEMICAL BULLETIN, 2019, 68 (02) : 293 - 300
  • [32] Synthesis and electrochemical characterization of xLi(Ni0.8Co0.15Mg0.05)O2-(1-x)Li[L1/3Mn2/3]O2 (0.0 ≤ x ≤ 1.0) cathodes for Li rechargeable batteries
    Pramanik, A.
    Ghanty, C.
    Majumder, S. B.
    SOLID STATE SCIENCES, 2010, 12 (10) : 1797 - 1802
  • [33] Effect of Li content on the electrochemical performance of Li1+x(Mn0.675Ni0.1625Co0.1625)1-xO2 cathode materials for high-power Li-ion batteries
    Zhang, Linsen
    Wang, Huan
    Wang, Lizhen
    IONICS, 2017, 23 (04) : 829 - 835
  • [34] X-ray Absorption Spectroscopy and X-ray Diffraction Studies of the Thermal and Li-Driven Electrochemical Dehydrogenation of Nanocrystalline Complex Hydrides Mg2MHx (M = Co, Ni)
    Provost, K.
    Zhang, J.
    Zaidi, W.
    Paul-Boncour, V.
    Bonnet, J. -P.
    Cuevas, F.
    Belin, S.
    Aymard, L.
    Latroche, M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (51) : 29554 - 29567
  • [35] Effect of Li content on the electrochemical performance of Li1 + x(Mn0.675Ni0.1625Co0.1625)1 − xO2 cathode materials for high-power Li-ion batteries
    Linsen Zhang
    Huan Wang
    Lizhen Wang
    Ionics, 2017, 23 : 829 - 835
  • [36] Analysis of Thermal Aging and Structural Stability of Li[Lix(Ni0.3Co0.1Mn0.6)1-x]O2 (x=0.11) Cathode Active Material for Rechargeable Li-Ion Batteries
    Vediappan, Kumaran
    Jo, Yong Nam
    Park, Suk-Jun
    Kim, Hyun-Soo
    Lee, Chang Woo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (09)
  • [37] Average and Local Crystal Structure and Electronic Structure of 0.4Li2MnO3-0.6LiMn1/3Ni1/3Co1/3O2 Using First-principles Calculations and Neutron Beam and Synchrotron X-Ray Sources
    Idemoto, Yasushi
    Sera, Yusuke
    Ishida, Naoya
    Kitamura, Naoto
    ELECTROCHEMISTRY, 2015, 83 (10) : 879 - 884
  • [38] Development of Li(Ni1/3Mn1/3Co1/3-x Na x )O2 cathode materials by synthesizing with glycine nitrate combustion technique for Li-ion rechargeable batteries
    Amaraweera, T. H. N. G.
    Wijayasinghe, Athula
    Mellander, B-E
    Dissanayake, M. A. K. L.
    IONICS, 2017, 23 (11) : 3001 - 3011
  • [39] Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li Ion Batteries
    Koga, H.
    Croguennec, L.
    Menetrier, M.
    Mannessiez, P.
    Weill, F.
    Delmas, C.
    Belin, S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (11) : 5700 - 5709
  • [40] On Aliovalent Substitution on the Li Site in LiMPO4: an X-ray Diffraction Study of the Systems LiMPO4-M1.5PO4 (=LixM1.5-x/2PO4; M = Ni, Co, Fe, Mn)
    Clemens, Oliver
    Haberkorn, Robert
    Springborg, Michael
    Beck, Horst Philipp
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2014, 640 (01): : 173 - 183