First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi2MnO3 • (1-x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion Batteries

被引:40
|
作者
Shin, D. [1 ]
Wolverton, C. [1 ]
Croy, J. R. [2 ]
Balasubramanian, M. [3 ]
Kang, S. -H. [2 ]
Rivera, C. M. Lopez [2 ]
Thackeray, Michael M. [2 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Argonne Natl Lab, Electromech Energy Storage Dept, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Xray Sci Div, Adv Photon Source Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
TOTAL-ENERGY CALCULATIONS; CATHODE MATERIALS; HIGH-CAPACITY; AB-INITIO; LITHIUM; INTERCALATION; FE; CONDUCTIVITY; PREDICTION; VOLTAGES;
D O I
10.1149/2.098202jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
It has been previously hypothesized that the enhanced rate capability of Li-Ni-PO4-treated xLi(2)MnO(3) center dot (1-x)LiMO2 positive electrodes (M = Mn, Ni, Co) in Li-ion batteries might be associated with a defect Ni-doped Li3PO4 surface structure [i.e., Li3-2yNiyPO4 (0 < y < 1)], thereby promoting fast Li+-ion conduction at the xLi(2)MnO(3) center dot (1-x)LiMO2 particle surface. In this paper, the solubility of divalent metals (Fe, Mn, Ni, Mg) in gamma-Li3PO4 is predicted with the first-principles GGA+U method in an effort to understand the enhanced rate capability. The predicted solubility (x) is extremely small; this finding is consistent with experimental evidence: 1) X-ray diffraction data obtained from Li-Ni-PO4-treated xLi(2)MnO(3) center dot (1-x)LiMO2 electrodes that show that, after annealing at 550 degrees C, a Li3PO4-like structure forms as a second phase at the electrode particle surface, and 2) X-ray absorption spectroscopy, which indicate that the nickel ions are accommodated in the transition metal layers of the Li2MnO3 component during the annealing process. However, electrochemical studies of Li3-2yNiyPO4-treated xLi(2)MnO(3) center dot (1-x) LiMO2 electrodes indicate that their rate capability increases as a function of y over the range y = 0 (Li3PO4) to y = 1 (LiNiPO4), strongly suggesting that, at some level, the nickel ions play a role in reducing electrochemical impedance and increasing electrode stability at the electrode particle surface. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.098202jes] All rights reserved.
引用
收藏
页码:A121 / A127
页数:7
相关论文
共 44 条
  • [21] Electrochemical Behavior of Layered Solid Solution Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-Ion Cathodes with and without Alumina Coatings
    West, W. C.
    Soler, J.
    Smart, M. C.
    Ratnakumar, B. V.
    Firdosy, S.
    Ravi, V.
    Anderson, M. S.
    Hrbacek, J.
    Lee, E. S.
    Manthiram, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) : A883 - A889
  • [22] Synthesis of layered xLi2MnO3•(1-x)LiMnO2 nanoplates and its electrochemical performance as Li-rich cathode materials for Li-ion battery
    Yang, Fan
    Zhang, Qinggang
    Hu, Xiaohong
    Peng, Tianyou
    ELECTROCHIMICA ACTA, 2015, 165 : 182 - 190
  • [23] Recent developments in synthesis of xLi(2)MnO(3) center dot (1 - x)LiMO2 (M = Ni, Co, Mn) cathode powders for high-energy lithium rechargeable batteries
    Doan, Nam Long
    Yoo, Kimoon
    Hoang, Tuan K. A.
    Chen, P.
    FRONTIERS IN ENERGY RESEARCH, 2014,
  • [24] Structural analysis of layered Li2MnO3-LiMO2 (M=Ni1/3Mn1/3Co1/3, Ni1/2Mn1/2) cathode materials by Rietveld refinement and first-principles calculations
    Song, Liubin
    Tang, Zhaohui
    Chen, Yang
    Xiao, Zhongliang
    Li, Lingjun
    Zheng, Honghe
    Li, Biping
    Liu, Zhili
    CERAMICS INTERNATIONAL, 2016, 42 (07) : 8537 - 8544
  • [25] First-Principles Study on Cathode Properties of Li2MTiO4 (M = V, Cr, Mn, Fe, Co, and Ni) with Oxygen Deficiency for Li-Ion Batteries
    Hamaguchi, Motoyuki
    Momida, Hiroyoshi
    Oguchi, Tamio
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (04)
  • [26] Influence of operating temperature on the activation efficiency of Li-ion cells with xLi2MnO3-(1-x)LiMn0.5Ni0.5O2 electrodes
    Nazario-Naveda, Renny
    Rojas-Flores, Segundo
    Gallozzo-Cardenas, Moises
    Juarez-Cortijo, Luisa
    Angelats-Silva, Luis
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND ENGINEERING, 2022, 12 (04): : 767 - 776
  • [27] Preparation and electrochemical performances of xLi2MnO3•(1-x) LiNi0.45Co0.2Mn0.35O2 (0 ≤ x ≤ 1) for high-power lithium-ion batteries
    Li, Xinlu
    Long, Junjun
    Su, Zelong
    Wang, Ronghua
    Xu, Chaohe
    Lei, Juan
    CERAMICS INTERNATIONAL, 2018, 44 (14) : 17062 - 17068
  • [28] Understanding the electrochemical properties of A2MSiO4 (A = Li and Na; M = Fe, Mn, Co and Ni) and the Na doping effect on Li2MSiO4 from first-principles calculations
    Li, Yuhan
    Sun, Weiwei
    Liang, Jing
    Sun, Hao
    Di Marco, Igor
    Ni, Lei
    Tang, Shuwei
    Zhang, Jingping
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) : 17455 - 17463
  • [29] Structure and Electrochemical Properties of xLi2MnO3-(1-x)Li[Ni0.8Co0.15Al0.05]O2 (0.5≤x≤0.8)
    Chen Pei-Lei
    Huang Ji-Chun
    Chen Yi-Xin
    Ji Chong-Xing
    Zhu De-Cheng
    Li De-Cheng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (06) : 937 - 946
  • [30] Structural and electrochemical properties of (1-x) Li[Ni0.2Li0.20Mn0.60]O2-xLi[Co0.50Li0.167Mn0.333]O2 for lithium secondary batteries
    Hong, YS
    Park, YJ
    Ryu, KS
    Chang, SH
    Shin, YJ
    JOURNAL OF POWER SOURCES, 2005, 147 (1-2) : 214 - 219