Searching for Dark Matter from the Sun with the IceCube Detector

被引:0
作者
Lazar, Jeffrey [1 ,2 ,3 ,4 ]
Liu, Qinrui [3 ,4 ]
Arguelles, Carlos [1 ,2 ]
Kheirandish, Ali [5 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ Cambridge, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA
[3] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
[4] Univ Wisconsin Madison, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA
[5] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
来源
37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021 | 2022年
关键词
CANDIDATES; NEUTRINOS; SPECTRA;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The existence of dark matter (DM) has been well-established by repeated experiments probing various length scales. Even though DM is expected to make up 85% of the current matter content of the Universe, its nature remains unknown. One broad class of corpuscular DM motivated by Standard Model (SM) extensions is weakly interacting massive particles (WIMPs). WIMPs can generically have a non-zero cross-section with SM nuclei, which allows them to scatter off nuclei in large celestial bodies such as the Sun, losing energy and becoming gravitationally bound in the process. After repeated scattering, WIMPs sink to the solar center, leading to an excess of WIMPs there. Subsequently, WIMPs can annihilate to stable SM particles, either directly or through a decay chain of unstable SM particles. Among stable SM particles, only neutrinos can escape the dense solar core. Thus, one may look for an excess of neutrinos from the Sun's direction as evidence of WIMPs. The IceCube Neutrino Observatory, which detects Cherenkov radiation of charged particles produced in neutrino interactions, is especially well-suited to such searches since it is sensitive to WIMPs with masses in the region preferred by supersymmetric extensions of the SM. In this contribution, I will present the results of IceCube's most recent solar WIMP search, which includes all neutrino flavors, covers the WIMP mass range from 10 GeV to 1 TeV, and has world-leading sensitivity over this entire range for most channels considered.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Searching for dark matter with a spin-based interferometer [J].
Gavilan-Martin, Daniel ;
Lukasiewicz, Grzegorz ;
Padniuk, Mikhail ;
Klinger, Emmanuel ;
Smolis, Magdalena ;
Figueroa, Nataniel L. ;
Jackson Kimball, Derek F. ;
Sushkov, Alexander O. ;
Pustelny, Szymon ;
Budker, Dmitry ;
Wickenbrock, Arne .
NATURE COMMUNICATIONS, 2025, 16 (01)
[42]   Conservative constraints on the effective theory of dark matter-nucleon interactions from IceCube: the impact of operator interference [J].
Brenner, Anja ;
Ibarra, Alejandro ;
Rappelt, Andreas .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (07)
[43]   ICECUBE-DEEPCORE-PINGU: FUNDAMENTAL NEUTRINO AND DARK MATTER PHYSICS AT THE SOUTH POLE [J].
Koskinen, D. Jason .
MODERN PHYSICS LETTERS A, 2011, 26 (39) :2899-2915
[44]   Dark matter in the Solar System. II. WIMP annihilation rates in the Sun [J].
Peter, Annika H. G. .
PHYSICAL REVIEW D, 2009, 79 (10)
[45]   A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope [J].
Adrian-Martiez, S. ;
Albert, A. ;
Andre, M. ;
Anton, G. ;
Ardid, M. ;
Aubert, J. -J. ;
Avgitas, T. ;
Baret, B. ;
Barrios-Marti, J. ;
Basa, S. ;
Bertin, V. ;
Biagi, S. ;
Bormuth, R. ;
Bou-Cabo, M. ;
Bouwhuis, M. C. ;
Bruijn, R. ;
Brunner, J. ;
Busto, J. ;
Capone, A. ;
Caramete, L. ;
Carr, J. ;
Celli, S. ;
Chiarusi, T. ;
Circella, M. ;
Coleiro, A. ;
Coniglione, R. ;
Costantini, H. ;
Coyle, P. ;
Creusot, A. ;
Deschamps, A. ;
De Bonis, G. ;
Distefano, C. ;
Donzaud, C. ;
Dornic, D. ;
Drouhin, D. ;
Eberl, T. ;
El Bojaddaini, I. ;
Elsaesser, D. ;
Enzenhoefer, A. ;
Fehn, K. ;
Felis, I. ;
Fusco, L. A. ;
Galata, S. ;
Gay, P. ;
Geisselsoeder, S. ;
Geyer, K. ;
Giordano, V. ;
Gleixner, A. ;
Glotin, H. ;
Gracia-Ruiz, R. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (05)
[46]   Oscillation of neutrinos produced by the annihilation of dark matter inside the Sun [J].
Esmaili, Arman ;
Farzan, Yasaman .
PHYSICAL REVIEW D, 2010, 81 (11)
[47]   Pinning down inelastic dark matter in the Sun and in direct detection [J].
Blennow, Mattias ;
Clementz, Stefan ;
Herrero-Garcia, Juan .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04)
[48]   On the role of neutrinos telescopes in the search for Dark Matter annihilations in the Sun [J].
Fornengo, Nicolao ;
Masiero, Antonio ;
Queiroz, Farinaldo S. ;
Yaguna, Carlos E. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (11)
[49]   Supergravity Model of Inflation and Explaining IceCube HESE Data via PeV Dark Matter Decay [J].
Chakravarty, Girish Kumar ;
Khan, Najimuddin ;
Mohanty, Subhendra .
ADVANCES IN HIGH ENERGY PHYSICS, 2020, 2020
[50]   Neutrinos in IceCube/KM3NeT as probes of dark matter substructures in galaxy clusters [J].
Dasgupta, Basudeb ;
Laha, Ranjan .
PHYSICAL REVIEW D, 2012, 86 (09)