Fullerenes Which are Cayley Graphs

被引:0
|
作者
Meng, Jixiang [1 ]
Huang, Qiongxiang [1 ]
Zhang, Zhao [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inspired by the fact that the buckminister fullerene is a Cayley graph, we are devoted to characterizing fullerenes which are Cayley graphs. Here we prove that the buckminister fullerene is the unique fullerene which is a Cayley graph.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 50 条
  • [1] Which Haar graphs are Cayley graphs?
    Estelyi, Istvan
    Pisanski, Tomaz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [2] Which Cayley graphs are integral?
    Abdollahi, A.
    Vatandoost, E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [3] Vertex-transitive generalized Cayley graphs which are not Cayley graphs
    Hujdurovic, Ademir
    Kutnar, Klavdija
    Marusic, Dragan
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 : 45 - 50
  • [4] WHICH GENERALIZED PETERSEN GRAPHS ARE CAYLEY-GRAPHS
    NEDELA, R
    SKOVIERA, M
    JOURNAL OF GRAPH THEORY, 1995, 19 (01) : 1 - 11
  • [5] Cayley sum graphs and eigenvalues of (3,6)-fullerenes
    DeVos, Matt
    Goddyn, Luis
    Mohar, Bojan
    Samal, Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 358 - 369
  • [6] Cubic (m,n)-metacirculant graphs which are not Cayley graphs
    Tan, ND
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 237 - 244
  • [7] ZIGZAG POLYHEX NANOTUBES WHICH ARE CAYLEY GRAPHS
    Liu, Chunqi
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 29 (01): : 1 - 8
  • [8] On the Problem of Determining which (n, k)-Star Graphs are Cayley Graphs
    Cheng, Eddie
    Li, Li
    Liptak, Laszlo
    Shim, Sangho
    Steffy, Daniel E.
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 85 - 102
  • [9] A Complete Classification of Which (n, k)-Star Graphs are Cayley Graphs
    Sweet, Karimah
    Li, Li
    Cheng, Eddie
    Liptak, Laszlo
    Steffy, Daniel E.
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 241 - 260
  • [10] On the Problem of Determining which (n, k)-Star Graphs are Cayley Graphs
    Eddie Cheng
    Li Li
    László Lipták
    Sangho Shim
    Daniel E. Steffy
    Graphs and Combinatorics, 2017, 33 : 85 - 102