Fuzzy stability of a cubic functional equation via fixed point technique

被引:19
|
作者
Mohiuddine, Syed Abdul [1 ]
Alotaibi, Abdullah [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2012年
关键词
Hyers-Ulam-Rassias stability; cubic functional equation; fuzzy normed space; fixed point; NORMED SPACES;
D O I
10.1186/1687-1847-2012-48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The object of this article is to determine Hyers-Ulam-Rassias stability results concerning the cubic functional equation in fuzzy normed space by using the fixed point method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Fuzzy stability of a cubic functional equation via fixed point technique
    Syed Abdul Mohiuddine
    Abdullah Alotaibi
    Advances in Difference Equations, 2012
  • [2] Intuitionistic fuzzy stability of a Jensen functional equation via fixed point technique
    Mohiuddine, S. A.
    Cancan, M.
    Sevli, H.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2403 - 2409
  • [3] A fixed point approach to the stability of the cubic functional equation
    Jung, Soon-Mo
    Kim, Tae-Soo
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2006, 12 (01): : 51 - 57
  • [4] FUZZY STABILITY OF A CUBIC-QUARTIC FUNCTIONAL EQUATION: A FIXED POINT APPROACH
    Jang, Sun-Young
    Park, Choonkil
    Shin, Dong Yun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 491 - 503
  • [5] Fuzzy Stability of Euler-Lagrange Type Cubic Functional Equation: A Fixed Point Approach
    Ravi, K.
    Murali, R.
    Thandapani, E.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2012, 4 (01): : 65 - 75
  • [6] Nonlinear Fuzzy Stability of a Functional Equation Related to a Characterization of Inner Product Spaces via Fixed Point Technique
    Wang, Zhihua
    Sahoo, Prasanna K.
    FILOMAT, 2015, 29 (05) : 1067 - 1080
  • [7] FIXED POINT METHOD FOR INTUITIONISTIC FUZZY STABILITY OF MIXED TYPE CUBIC-QUARTIC FUNCTIONAL EQUATION
    Alsulami, Saud M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (02) : 359 - 367
  • [8] On the stability of an Euler Lagrange type cubic functional equation using the fixed point method
    Haokip, Nehjamang
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1841 - 1848
  • [9] SOLUTION AND STABILITY OF A CUBIC TYPE FUNCTIONAL EQUATION: USING DIRECT AND FIXED POINT METHODS
    Govindan, V
    Murthy, S.
    Saravanan, M.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 7 - 26
  • [10] A FIXED POINT APPROACH TO STABILITY OF A CUBIC FUNCTIONAL EQUATION IN 2-BANACH SPACES
    Sayar, Khaled Yahya Naif
    Bergam, Amal
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (02): : 239 - 249