Vortex-induced vibrations of two rigidly coupled circular cylinders in tandem arrangement

被引:14
|
作者
Ping, Huan [1 ]
Cao, Yong [1 ]
Zhang, Kai [1 ]
Han, Zhaolong [1 ]
Zhou, Dai [1 ,2 ,3 ]
Zhu, Hongbo [1 ]
Bao, Yan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[3] Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Bluff body; Vorticity dynamics; Low Reynolds number; Vortex-induced vibration; FLOW-INDUCED VIBRATIONS; NUMERICAL-SIMULATION; INDUCED OSCILLATIONS; CROSS-FLOW; WAKE; INTERFERENCE; DYNAMICS; NUMBERS;
D O I
10.1016/j.oceaneng.2022.112316
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, we study the transverse vortex-induced vibrations (VIV) of two rigidly connected circular cylinders of equal size, arranged in a tandem configuration, by means of two-dimensional numerical computations. Results are examined for Re= 250 and a fixed center-to-center separation of 2D. The dynamic response of the two-cylinder system is investigated in detail over a domain of reduced velocities ranging from U-r= 2 to 8. The diverse types of branches are identified, on the basis of their distinct characteristics in the amplitude and frequency responses. Among them, the lower branch is of particular interest as it is quasi-periodic in nature, instead of the periodic regime that is well documented for the isolated cylinder case. By scrutinizing the vorticity dynamics, it reveals that this quasi-periodicity arises from the switching between two flow states, which are essentially distinguished by whether an active gap flow is present. The dynamically rich response leads to a rich variety of phase dynamics, involving phase locking, trapping, slipping and drifting; in particular, phase drifting is indicative of a forthcoming phase jump of 180 between the lift force and the displacement. It is also found that in the initial branch, the excitation of the system is driven by the pressure lift force on the rear cylinder; by contrast, in the lower branch, it is the pressure lift force on the front cylinder that acts as a source of excitation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Three-dimensional numerical simulations of vortex-induced vibrations of tapered circular cylinders
    Kaja, Kalyani
    Zhao, Ming
    Xiang, Yang
    Cheng, Liang
    APPLIED OCEAN RESEARCH, 2016, 60 : 1 - 11
  • [32] Effect of the spacing ratio on vortex-induced vibration of three rigidly coupled cylinders in an equilateral-triangular arrangement
    Chen, Zhenhua
    Sun, Yifei
    Liu, Qingkuan
    Lu, Chuan
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [33] Uncertainty Analysis of Experiments of Vortex-Induced Vibrations for Circular Cylinders
    Usta, O.
    Duranay, A.
    JOURNAL OF APPLIED FLUID MECHANICS, 2021, 14 (02) : 541 - 553
  • [34] Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration
    Kim, Sangil
    Alam, Md Mahbub
    Sakamoto, Hiroshi
    Zhou, Yu
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2009, 97 (5-6) : 304 - 311
  • [35] Circular cylinder wakes and vortex-induced vibrations
    Bearman, P. W.
    JOURNAL OF FLUIDS AND STRUCTURES, 2011, 27 (5-6) : 648 - 658
  • [36] Flow induced vibration of two rigidly coupled circular cylinders in tandem and side-by-side arrangements at a low Reynolds number of 150
    Zhao, Ming
    PHYSICS OF FLUIDS, 2013, 25 (12)
  • [37] Polynomial chaos assessment of design tolerances for vortex-induced vibrations of two cylinders in tandem
    Geraci, Gianluca
    De Tullio, Marco Donato
    Iaccarino, Gianluca
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2017, 31 (02): : 185 - 198
  • [38] Vortex-induced vibrations of tandem diamond cylinders: A novel lock-in behavior
    Kumar, Deepak
    Sourav, Kumar
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 255
  • [39] Vortex-induced vibrations of two side-by-side circular cylinders with two degrees of freedom in laminar cross-flow
    Chen, Weilin
    Ji, Chunning
    Xu, Dong
    COMPUTERS & FLUIDS, 2019, 193
  • [40] Vortex-induced vibrations of three staggered circular cylinders at low Reynolds numbers
    Behara, Suresh
    Ravikanth, B.
    Chandra, Venu
    PHYSICS OF FLUIDS, 2017, 29 (08)