Winding up superfluid in a torus via Bose Einstein condensation

被引:97
作者
Das, Arnab [1 ]
Sabbatini, Jacopo [2 ]
Zurek, Wojciech H. [1 ]
机构
[1] LANL, Div Theory, Los Alamos, NM 87545 USA
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Quantum Atom Opt, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
SYMMETRY-BREAKING; COSMOLOGICAL EXPERIMENTS; STRING FORMATION; DYNAMICS; GROWTH;
D O I
10.1038/srep00352
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phase transitions are usually treated as equilibrium phenomena, which yields telltale universality classes with scaling behavior of relaxation time and healing length. However, in second-order phase transitions relaxation time diverges near the critical point (critical slowing down"). Therefore, every such transition traversed at a finite rate is a non-equilibrium process. Kibble-Zurek mechanism (KZM) captures this basic physics, predicting sizes of domains - fragments of broken symmetry - and the density of topological defects, long-lived relics of symmetry breaking that can survive long after the transition. To test KZM we simulate Bose-Einstein condensation in a ring using stochastic Gross-Pitaevskii equation and show that BEC formation can spontaneously generate quantized circulation of the newborn condensate. The magnitude of the resulting winding numbers and the time-lag of BEC density growth - both experimentally measurable - follow scalings predicted by KZM. Our results may also facilitate measuring the dynamical critical exponent for the BEC transition.
引用
收藏
页数:6
相关论文
共 50 条
[1]  
[Anonymous], 2009, NATURE, V459, P142
[2]   Vortex string formation in a 3D U(1) temperature quench [J].
Antunes, ND ;
Bettencourt, LMA ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1999, 82 (14) :2824-2827
[3]   Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3 [J].
Bauerle, C ;
Bunkov, YM ;
Fisher, SN ;
Godfrin, H ;
Pickett, GR .
NATURE, 1996, 382 (6589) :332-334
[4]   Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques [J].
Blakie, P. B. ;
Bradley, A. S. ;
Davis, M. J. ;
Ballagh, R. J. ;
Gardiner, C. W. .
ADVANCES IN PHYSICS, 2008, 57 (05) :363-455
[5]   Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation [J].
Bradley, A. S. ;
Gardiner, C. W. ;
Davis, M. J. .
PHYSICAL REVIEW A, 2008, 77 (03)
[6]   Quantitative study of quasi-one-dimensional Bose gas experiments via the stochastic Gross-Pitaevskii equation [J].
Cockburn, S. P. ;
Gallucci, D. ;
Proukakis, N. P. .
PHYSICAL REVIEW A, 2011, 84 (02)
[7]   The stochastic Gross-Pitaevskii equation and some applications [J].
Cockburn, S. P. ;
Proukakis, N. P. .
LASER PHYSICS, 2009, 19 (04) :558-570
[8]   How to fix a broken symmetry: quantum dynamics of symmetry restoration in a ferromagnetic Bose-Einstein condensate [J].
Damski, Bogdan ;
Zurek, Wojciech H. .
NEW JOURNAL OF PHYSICS, 2008, 10
[9]   Soliton Creation During a Bose-Einstein Condensation [J].
Damski, Bogdan ;
Zurek, Wojciech H. .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)
[10]   Quantum phase transition in space in a ferromagnetic spin-1 Bose-Einstein condensate [J].
Damski, Bogdan ;
Zurek, Wojciech H. .
NEW JOURNAL OF PHYSICS, 2009, 11